Drought and salt stress are two major abiotic factors significantly impacting crop growth and yield. Climate change leads to increasing drought and soil salinization issues, rising significant challenges to agricultural production. Amylases play a crucial role in enhancing the tolerance of crops to these stresses by regulating physiological and enzymatic activities. Previous study identified MeAMY1 and MeBAM3 as key genes involved in cassava starch metabolism under drought stress. To investigate their functions under drought and salt stress, MeAMY1 and MeBAM3 genes were cloned and over-expressed in Arabidopsis thaliana in the current study. Overexpression of MeAMY1 in Arabidopsis enhances amylase activities, promotes starch hydrolysis, releases soluble sugar and thus enhances osmotic balance in transgenic Arabidopsis. In the mean while, expression of BAM1 and SEX1 were depressed by MeAMY1 to maintain the protects cells closed under stress and preserved starch for adapting the stressful environments. Overexpression of the MeBAM3 in Arabidopsis can increase the expression levels of AMY3 and RVE1, promotes starch hydrolysis, releases soluble sugar from the chloroplasts to the cytoplasm and thus enhances osmoregulatory substance content, reducing stress-induced damage to antioxidant enzymes and cell membranes and improving stress tolerance. The principal component analysis further indicated that MeAMY1 and MeBAM3 overexpression lines responded similarly to drought stress, while MeBAM3 overexpression provided greater resilience to salt stress.
In view of the pollution of unpaved road dust in the current mines, this study demonstrated the excellent dust suppression performance of the dust suppressant by testing the dynamic viscosity, penetration depth and mechanical properties of the dust suppressant, and apply molecular dynamics simulations to reveal the interactions between substances. The results showed that the maximum dust suppression rate was 97.75 % with a dust suppressant formulation of 0.1 wt% SPI + 0.03 wt% Paas + NaOH. The addition of NaOH disrupts the hydrogen bonds between SPI molecules, which allows the SPN to better penetrate the soil particles and form effective bonding networks. The SPI molecules rapidly absorb onto the surface of soil particles through electrostatic interactions and hydrogen bonds. The crosslinking between SPI molecules connects multiple soil particles, forming larger agglomerates. The polar side chain groups in the SPN interact with soil particles through dipole-dipole interactions, further stabilizing the agglomerates and resulting in an enhanced dust suppression effect. Soil samples treated with SPN exhibited higher compressive strength values. This is primarily attributed to the stable network structure formed by the SPN dust suppressant within the soil. Additionally, the SPI molecules and sodium polyacrylate (Paas) molecules in SPN contain multiple active groups, which interact under the influence of NaOH, restricting the rotation and movement of molecular chains. From a microscopic perspective, the SPN dust suppressant further strengthens the interactions between soil particles through mechanisms such as liquid bridge forces, which contribute to the superior dust suppression effect at the macroscopic level.
Silicon monoxide (SiO) is highly attractive as an anode material for high-energy lithium-ion batteries (LIBs) due to its significantly higher specific capacity. However, its practical application is hindered by substantial volume expansion during cycling, which leads to material pulverization and an unstable solid electrolyte interphase (SEI) layer. Inspired by the natural root fixation in soil, we designed a root-like topological structure binder, cassava starch-citric acid (CS-CA), based on the synergistic action of covalent and hydrogen bonds. The abundant -OH and -COOH groups in CS-CA molecules effectively form hydrogen bonds with the -OH groups on the SiO surface, significantly enhancing the interfacial interaction between CS-CA and SiO. The root-like topological structure of CS-CA with a high tolerance alleviates the mechanical stress generated by the volume changes of SiO. More encouragingly, the hydrogen bond action among CS-CA molecules produces a self-healing effect, which is advantageous for repairing damaged electrodes and preserving their structural integrity. As such, the CS-CA/SiO electrode exhibits exceptional cycling performance (963.1 mA h g-1 after 400 cycles at 2 A g-1 ) and rate capability (558.9 mA h g-1 at 5 A g-1 ). This innovative, topologically interconnected, root-inspired binder will greatly advance the practical application of long-lasting micron-sized SiO anodes. (c) 2025 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Most Australian vegetable growers apply fumigants or nematicides as a precautionary nematode control measure when crops susceptible to root-knot nematode (RKN, Meloidogyne spp.) are grown in soils and environmental conditions suitable for the nematode. The only way growers can make rational decisions on whether these expensive and environmentally disruptive chemicals are required is to regularly monitor RKN populations and decide whether numbers prior to planting are high enough to cause economic damage. However, such monitoring programs are difficult to implement because nematode quantification methods vary in efficiency and the damage threshold for RKN on highly susceptible vegetable crops is often < 10 root-knot nematodes /200 mL soil. Consequently, five nematode quantification methods were tested to see whether they could reliably detect these very low population densities of RKN. Two novel methods produced consistent results: 1) extracting nematodes from 2 L soil samples using Whitehead trays, quantifying the RKN DNA in the nematode suspension using molecular methods, and generating a standard curve so that the molecular results provided an estimate of the total number of RKN individuals in the sample, and 2) a bioassay in which two tomato seedlings were planted in pots containing 2 L soil and the number of galls produced on roots were counted after 21-25 days. Both methods could be used to quantify low populations of RKN, but bioassays are more practical because expensive equipment and facilities are not required and they can be done at a local level by people lacking nematological or molecular skills.
Fluorite (CaF2) leaching and weathering (30 days) were conducted to measure fluoride dissolution in semiarid endemic soil and controlled synthetic solutions, and determining the main chemical species involved in these processes via atomic force microscopy (AFM), X-ray diffraction (XRD) and Scanning electron microscopy (SEM-EDS). Ecological health response in this system was assessed exposing Allium cepa bulbs to 10, 50, 100, 450, 550 and 950 mg CaF2 kg-1 soil to determine genotoxic damage, protein and systemic fluorine concentrations. Results indicated 3 cycles of passive-active fluorite dissolution enabling fluoride concentrations up to 164 mg L-1 under endemic conditions; however, highest fluoride dissolution was 780 mg L-1 for synthetic sulfates solution. Cyclic behavior was associated with the formation of ultrafine-sized calcite (CaCO3)-like compounds. Fluorine concentrations ranged from 5 to 300 mg kg-1 in vegetable tissue. The electrophoretic profiles revealed changes in the protein expression after 7, 15 and 25 days of exposure. Genotoxic damage rate was 50, 82 and 42% for these exposures (950 mg CaF2 kg-1 soil). The dose-response curves of the normalized total protein content revealed the kinetics vegetable health damage rates for only 7 and 25 days. This behavior was best adjusted for only 7 days. These findings exhibited characteristics for initial damage and adaptation-recovery stage after 15 days. Environmental implications of these findings were further discussed.
Root-lesion nematodes, particularly Pratylenchus neglectus and P. crenatus (PNC), are widely distributed in New Zealand and cause significant damage to maize roots, reducing crop productivity. Despite their economic importance, no comprehensive assessment of commercial maize hybrids' resistance to PNC has been conducted in the country. Significant variation was observed in the nematode reproduction factor (Rf) and final population (Pf) among hybrids. In Experiment 1 (initial population (Pi) = 1250 PNC kg(-)(1) soil), Rf ranged from 3.1 in hybrid P8500 to 7.1 in hybrid P9127, with Pf values ranging from 3863 to 8903 PNC kg(-)(1) soil + roots in 45 days. In Experiment 2 (Pi = 750 PNC kg(-)(1) soil), Rf ranged from 18.4 in hybrid P1613 to 37.5 in hybrid P8805, with Pf values from 13,784 to 28,426 PNC kg(-)(1) soil + roots in 60 days. These results indicate active nematode reproduction and substantial hybrid-dependent variation in host response. Experiment 3 examined the impact of varying initial inoculum densities (500, 1000 and 1500 PNC kg(-)(1) soil), showing a dose-dependent increase in Pf and corresponding root damage. Susceptible hybrid (P9127) exhibited up to 42% root dry weight and 22% shoot dry weight reductions. This study is the first systematic evaluation of PNC resistance in New Zealand maize hybrids. It identifies P9127 and P8805 as highly susceptible, and P0891, P8500, and P1613 as moderately resistant. These findings offer valuable benchmarks for future breeding and support nematode management in New Zealand.
The EU plastic strategy aims to reduce the environmental impact of the increasing plastic production, by replacing petrochemical-based polymers with biodegradable ones. But this mitigation measure for the plastamination might, in turn, generate bio-based microplastics in environments that are not necessarily safe. Biodegradable and non-biodegradable plastics, polylactic acid (PLA) and polypropylene (PP) respectively, and their leachates were used for testing microplastic (MP) effects on seven marine species from different trophic levels, including bacteria, algae, rotifers, copepods, amphipods and branchiopods. Results highlighted the toxic effects of both MPs for three consumers, but no toxicity for decomposers and primary producers. Leachates did not induce negative effects for five species tested. A dose-dependent toxic effect of both PP and PLA on different life stages of A. franciscana was observed, with more advanced stages being more sensitive to MPs in terms of mortality. Molecular analysis revealed increased mRNA levels of Heat shock proteins in A. franciscana metanauplii and adults, suggesting their role in oxidative stress response, and decreasing in juveniles, indicating potential irreversible damage. These results indicated that PLA and PP might have comparable ecotoxicological impacts, raising concerns about the effectiveness of biodegradable polymers in mitigation plastic pollution. The study also emphasizes the importance of considering different trophic levels, life stages, and feeding strategies when evaluating the toxic effects of MPs from a One Health perspective.
In order to explore the influence of wheel surface structure on the trafficability of planetary rovers on soft ground, three kinds of wheels with different rigid wheel surface structures were selected for research. The basic performance parameters of the wheel on simulated planetary soil are measured and tested to explore the law of the wheel's sinkage, slip rate and traction coefficient. The results show that the wheel grouser increases the sinkage and slip rate of the wheel. The tread reduces the sinkage of the wheel, but it also reduces the traction performance of the wheel at a higher slip rate. Considering the complex working conditions of the planetary rover on the soft ground, the six-wheeled three-rocker-arm planetary rover is used to carry out passability tests in three terrains: obstacle crossing, out of sinkage and climbing. The results show that the grousers can cause disturbance and damage to the soft soil and have significant passing advantages. There may also be a slip phenomenon when crossing the obstacle, but it does not affect passing. The completely closed tread structure will cause soil accumulation between the tread and the grouser, affecting the wheel's ability to escape sinkage. This study provides a reference for the design of a rigid wheel surface structure for planetary rovers from the perspective of passing performance.
This study investigates the collision model of cassava seed stems in precision planters. Utilizing a physical property analyzer and a custom test platform based on collision dynamics principles, we measured and analyzed the forces and recovery coefficients of seed stem collisions. Mixed orthogonal and one-way tests were conducted to identify the main factors affecting the collision recovery coefficient of seed stems, including collision contact material, drop height, seed stem mass, moisture content, drop direction, and seed stem variety. The results from the orthogonal tests indicated that the factors influencing the collision recovery coefficient were ranked as follows: collision contact material > drop height > seed stem mass > moisture content > drop direction > seed stem variety. Notably, the effects of impact contact material, drop height, stem mass, and moisture content were significant, while the effects of drop direction and seed stem variety were relatively insignificant. The one-way test results revealed that the collision recovery coefficients for cassava seed stems with structural steel Q235, rubber sheet, seed stems, and sandy loam soil decreased progressively, with values for SC205 being 0.8172, 0.6975, 0.6649, and 0.6341, respectively, and values for GR4 being 0.7796, 0.7132, 0.6913, and 0.6134, respectively. Furthermore, as drop height increased, the collision recovery coefficient of cassava seed stems decreased; similarly, higher stem mass and moisture content correlated with lower coefficients. To minimize impact during critical stages of cassava planting, transportation, and processing, materials with lower recovery coefficients should be prioritized in equipment design. Incorporating rubber coatings can effectively mitigate collision effects in components such as seed supply and planting mechanisms. These findings provide valuable insights for designing and enhancing key mechanical features in machinery used for planting, transporting, and processing cassava.
This study evaluates DNA damage and multi-element exposure in populations from La Mojana, a region of North Colombia heavily impacted by artisanal and small-scale gold mining (ASGM). DNA damage markers from the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay, including micronucleated binucleated cells (MNBN), nuclear buds (NBUDs) and nucleoplasmic bridges (NPB), were assessed in 71 exposed individuals and 37 unexposed participants. Exposed individuals had significantly higher MNBN frequencies (PR = 1.26, 95% CI: 1.02-1.57, p = 0.039). Principal Component Analysis (PCA) identified the Soil-Derived Mining-Associated Elements (PC1), including V, Fe, Al, Co, Ba, Se and Mn, as being strongly associated with high MNBN frequencies in the exposed population (PR = 10.45, 95% CI: 9.75-12.18, p < 0.001). GAMLSS modeling revealed non-linear effects of PC1, with greater increases in MNBN at higher concentrations, especially in exposed individuals. These results highlight the dual role of essential and toxic elements, with low concentrations being potentially protective but higher concentrations increasing genotoxicity. Women consistently exhibited higher MNBN frequencies than men, suggesting sex-specific susceptibilities. This study highlights the compounded risks of chronic metal exposure in mining-impacted regions and underscores the urgent need for targeted interventions to mitigate genotoxic risks in vulnerable populations.