Study region: Urumqi River headwater region in eastern Tianshan, central Asia. Study focus: Climate change is anticipated to accelerate glacier shrinkage and alter hydrological conditions, causing variations in the runoff patterns in the catchment and significantly threatening the regional water resources. However, few models exhibit adequate performance to simulate both surface alterations and glacier/snow runoff. Therefore, this study combined the glacier module with the Soil and Water Assessment Tool (SWAT) model to estimate the effect of climate change on the streamflow in the Urumqi River headwater region. The Urumqi River Headwater region is representative because of its long data series, viatal location, and local water availability, and it contains the longest-observed reference glacier (Urumqi Glacier No.1) in China, which spans the period from 1958 to the present. New hydrological insights for the region: The SWAT model performed satisfactorily for both calibration (1983-2005) and validation (2006-2016) periods with a Nash-Sutcliffe efficiency (NSE) greater than 0.80. The water balance analysis suggested that the snow/glacier melt contributed approximately 25% to the water yield. At the end of the 21st century, the temperature would increase by 2.4-3.8 degrees C while the precipitation would decrease by 1-2% under two future scenarios (ssp245 and ssp585). Thus, a 34-36% reduction in streamflow was projected due to above climate change impacts. This information would contribute to the development of adaptation strategies for sustainable water resource management.
2024-12There is 78 % permafrost and seasonal frozen soil in the Yangtze River's Source Region (SRYR), which is situated in the middle of the Qinghai-Xizang Plateau. Three distinct scenarios were developed in the Soil and Water Assessment Tool (SWAT) to model the effects of land cover change (LCC) on various water balance components. Discharge and percolation of groundwater have decreased by mid-December. This demonstrates the seasonal contributions of subsurface water, which diminish when soil freezes. During winter, when surface water inputs are low, groundwater storage becomes even more critical to ensure water supply due to this periodic trend. An impermeable layer underneath the active layer thickness decreases GWQ and PERC in LCC + permafrost scenario. The water transport and storage phase reached a critical point in August when precipitation, permafrost thawing, and snowmelt caused LATQ to surge. To prevent waterlogging and save water for dry periods, it is necessary to control this peak flow phase. Hydrological processes, permafrost dynamics, and land cover changes in the SRYR are difficult, according to the data. These interactions enhance water circulation throughout the year, recharge of groundwater supplies, surface runoff, and lateral flow. For the region's water resource management to be effective in sustaining ecohydrology, ensuring appropriate water storage, and alleviating freshwater scarcity, these dynamics must be considered.
2024-12-01 Web of ScienceThe Yangtze River Source Region (YaRSR) is located in the third polar region, the most threatened zone by global warming after the Arctic. Permafrost covers eighty percent of the total area of YaRSR, while the rest is seasonally frozen ground. Due to a significant rise in air temperature, degradation of the permafrost could occur. Permafrost coverage in a river basin greatly controls its hydrology. This study focuses on hydrological modeling in this permafrost environment using the Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated (1985-2000) and validated (2001-2015) on a daily time step. The results were also compared on a monthly time scale. An impermeable layer was introduced within the SWAT model to represent the permafrost conditions. The streamflow is strongly dependent on the seasonal variation of precipitation and temperature, and the rising limb of the hydrograph shows the melting of snow, the contribution of soil water, and thawing of permafrost during the spring-summer season. The permafrost layer well restricted the deep percolation of water. During the spring season, streamflow mainly consists of surface runoff because of the frozen soils. Permafrost and frozen ground thawing lead to an increase in the contribution of groundwater flow to streamflow. Ultimately, the frozen ground depletes as the temperature gets close to the freezing point. This study also describes the SWAT model appli-cation to better analyze and understand the hydrology of the permafrost/frozen ground with limited data availability.
2022-12-01 Web of Science