共检索到 27

Glacial responses to climate change exhibit considerable heterogeneity. Although global glaciers are generally thinning and retreat, glaciers in the Karakoram region are distinct in their surging or advancing, exhibiting nearly zero or positive mass balance-a phenomenon known as the Karakoram Anomaly. This anomaly has sparked significant scientific interest, prompting extensive research into glacier anomalies. However, the dynamics of the Karakoram anomaly, particularly its evolution and persistence, remain insufficiently explored. In this study, we employed Landsat reflectance data and Moderate Resolution Imaging Spectroradiometer (MODIS) MCD43A3 albedo products to developed high-resolution albedo retrieval models using two machine learning (ML) regressions--random forest regression (RFR) and back-propagation neural network regression (BPNNR). The optimal BPNNR model (Pearson correlation coefficient [r] = 0.77-0.97, unbiased root mean squared error [ubRMSE] = 0.056-0.077, RMSE = 0.055-0.168, Bias = -0.149 similar to -0.001) was implemented on the Google Earth Engine cloud-based platform to estimate summer albedo at a 30-m resolution for the Karakoram region from 1990 to 2021. Validation against in-situ albedo measurements on three glaciers (Batura, Mulungutti and Yala Glacier) demonstrated that the model achieved an average ubRMSE of 0.069 (p < 0.001), with RMSE and ubRMSE improvements of 0.027 compared to MODIS albedo products. The high-resolution data was then used to identify firn/snow extents using a 0.37 threshold, facilitating the extraction of long-term firn-line altitudes (FLA) to indicate the glacier dynamics. Our findings revealed that a consistent decline in summer albedo across the Karakoram over the past three decades, signifying a darkening of glacier surfaces that increased solar radiation absorption and intensified melting. The reduction in albedo showed spatial heterogeneity, with slower reductions in the western and central Karakoram (-0.0005-0.0005 yr(-1)) compared to the eastern Karakoram (-0.006 similar to -0.01 yr(-1)). Notably, surge- or advance-type glaciers, avalanche-fed glaciers and debris-covered glaciers exhibited slower albedo reduction rates, which decreased further with increasing glacier size. Additionally, albedo reduction accelerated with altitude, peaking near the equilibrium-line altitude. Fluctuations in the albedo-derived FLAs suggest a transition in the dynamics of Karakoram glaciers from anomalous behavior to retreat. Most glaciers exhibited anomalous behavior from 1995 to 2010, peaking in 2003, but they have shown signs of retreat since the 2010s, marking the end of the Karakoram anomaly. These insights deepen our understanding of the Karakoram anomaly and provide a theoretical basis for assessing the effect of glacier anomaly to retreat dynamics on the water resources and adaptation strategies for the Indus and Tarim Rivers.

2024-12-15 Web of Science

Among the essential tools to address global environmental information requirements are the Earth-Observing (EO) satellites with free and open data access. This paper reviews those EO satellites from international space programs that already, or will in the next decade or so, provide essential data of importance to the environmental sciences that describe Earth's status. We summarize factors distinguishing those pioneering satellites placed in space over the past half century, and their links to modern ones, and the changing priorities for spaceborne instruments and platforms. We illustrate the broad sweep of instrument technologies useful for observing different aspects of the physio-biological aspects of the Earth's surface, spanning wavelengths from the UV-A at 380 nanometers to microwave and radar out to 1 m. We provide a background on the technical specifications of each mission and its primary instrument(s), the types of data collected, and examples of applications that illustrate these observations. We provide websites for additional mission details of each instrument, the history or context behind their measurements, and additional details about their instrument design, specifications, and measurements.

2024-06-01 Web of Science

The tau -omega model is expanded to properly simulate L -band microwave emission of the soil-snow-vegetation continuum through a closed -form solution of Maxwell's equations, considering the intervening dry snow layer as a loss -less medium. The error standard deviations of a least -squared inversion are 0.1 and 3.5 for VOD and ground permittivity, over moderately dense vegetation and a snow density ranging from 100 to 400 kg m -3 , considering noisy brightness temperatures with a standard deviation of 1 kelvin. Using the Soil Moisture Active Passive (SMAP) satellite observations, new global estimates of VOD and ground permittivity are presented over the Arctic boreal forests and permafrost areas. In the absence of dense in situ observations of ground permittivity and VOD, the retrievals are causally validated using ancillary variables including ground temperature, above -ground biomass, tree height, and net ecosystem exchange of carbon dioxide. Time -series analyses promise that the new data set can expand our understanding of the land-atmosphere interactions and exchange of carbon fluxes over Arctic landscapes.

2024-05-15 Web of Science

The of the Yellow River between its source and Hekou Town in Inner Mongolia is known as the Upper Yellow River Basin. It is the main source area of water resources in the Yellow River Basin, providing reliable water resources for 120 million people. Studying the hydrometeorological changes in the Upper Yellow River Basin is crucial for the development of human society. However, in the past, there has been limited research on hydrometeorological changes in the Upper Yellow River Basin. In order to clarify the four-dimensional spatiotemporal variation characteristics of hydrometeorological elements in the Upper Yellow River Basin, satellite and reanalysis hydrometeorological elements products need to be used. Unfortunately, there is currently a lack of precise evaluation studies on satellite and reanalysis hydrometeorological elements products in the Upper Yellow River Basin, and the geomorphic characteristics of this area have raised doubts about the accuracy of satellite and reanalysis hydrometeorological elements products. Thus, the evaluation study in the Upper Yellow River Basin is an important prerequisite for studying the four-dimensional spatiotemporal changes of hydrometeorological elements. When conducting evaluation study, we found that previous evaluation studies had a very confusing understanding of the spatiotemporal characteristics of datasets. Some papers even treated the spatiotemporal characteristics of evaluation metrics as the spatiotemporal characteristics of datasets. Therefore, we introduced a four-dimensional spacetime of both datasets and evaluation metrics to rectify the chaotic spatiotemporal view in the past. Our research results show that satellite and reanalysis hydrometeorological elements products have different abilities in describing the temporal and spatial distribution and change characteristics of hydrometeorological elements. The difference in the ability of satellite and reanalysis hydrometeorological elements products to describe temporal and spatial distribution and change characteristics requires us to select data at different temporal and spatial scales according to research needs when conducting hydrometeorological research, in order to ensure the credibility of the research results.

2024-05

The southeastern Tibetan Plateau (SETP), which hosts the most extensive marine glaciers on the Tibetan Plateau (TP), exhibits enhanced sensitivity to climatic fluctuations. Under global warming, persistent glacier mass depletion within the SETP poses a risk to water resource security and sustainability in adjacent nations and regions. This study deployed a high-precision ICESat-2 satellite altimetry technique to evaluate SETP glacier thickness changes from 2018 to 2022. Our results show that the average change rate in glacier thickness in the SETP is -0.91 +/- 0.18 m/yr, and the corresponding glacier mass change is -7.61 +/- 1.52 Gt/yr. In the SETP, the glacier mass loss obtained via ICESat-2 data is larger than the mass change in total land water storage observed by the Gravity Recovery and Climate Experiment follow-on satellite (GRACE-FO), -5.13 +/- 2.55 Gt/yr, which underscores the changes occurring in other land water components, including snow (-0.44 +/- 0.09 Gt/yr), lakes (-0.06 +/- 0.02 Gt/yr), soil moisture (1.88 +/- 1.83 Gt/yr), and groundwater (1.45 +/- 0.70 Gt/yr), with a closure error of -0.35 Gt/yr. This demonstrates that this dramatic glacier mass loss is the main reason for the decrease in total land water storage in the SETP. Generally, there are decreasing trends in solid water storage (glacier and snow) against stable or increasing trends in liquid water storage (lakes, soil moisture, and groundwater) in the SETP. This persistent decrease in solid water is linked to the enhanced melting induced by rising temperatures. Given the decreasing trend in summer precipitation, the surge in liquid water in the SETP should be principally ascribed to the increased melting of solid water.

2024-03-01 Web of Science

Objective Light-absorbing aerosols have a huge impact on visibility. The atmospheric pollution they cause can pose serious risks to human health. Quantitatively assessing the optical properties and spatiotemporal distribution of light-absorbing aerosols is of vital importance for decision-making in the management and control of complex air pollution. The dynamic changes in the physicochemical properties of light-absorbing aerosols, along with their temporal and spatial heterogeneity, introduce significant uncertainties in simulating their radiative forcing. The challenges arise from difficulties in accurately estimating particle size distribution, chemical composition, and mixed state, impeding precise retrievals through satellite remote sensing, with common model simulations and radiative transfer equations assuming the presence of external mixing for light-absorbing aerosols. However, research indicates that, especially in regions prone to pollution events like East Asia, South Asia, and Southeast Asia, a core-shell mixed state, with black carbon as the core and scattering aerosols like sulfates and nitrates as the shell, best represents the prevailing state of light-absorbing aerosols. Rough assumptions about aerosol states not only introduce significant errors in simulating aerosol number and mass concentrations in the atmosphere but also lead to substantial uncertainties in estimating overall radiative forcing. Methods Data from both satellite and in situ measurements are employed in the present study. First, we employ the AERONET aerosol optical depth (AOD) dataset to identify polluted days at three selected sites, and we match it in space and time with the single scattering albedo (SSA) dataset combined with the TROPOMI ultraviolet (UV) SSA dataset. Second, we utilize the Mie optical model across various combinations of core and shell sizes to establish a preliminary SSA map. Subsequently, we use SSA data from six different wavebands to constrain the SSA output from the Mie model. All calculations are conducted at a daily and grid-level resolution. Upon obtaining probability distributions for core size, shell size, and their corresponding SSA and absorption coefficient (ABS) values, we then apply spatial relationships between the column total absorbing aerosol optical depth (AAOD) from TROPOMI, single-particle absorption, and size distribution. This allows us to assess the column value of black carbon mass concentration and particle number concentration. Results and Discussions Spatial distribution of the mean absorption coefficient obtained from the Mie model simulations during periods of severe pollution shows that the absorption coefficient of the Beijing station is generally higher, with values mainly concentrated between 0. 05 and 0. 07. This indicates a higher presence of light-absorbing aerosols during this period. For the Hong Kong station, most of the absorption coefficients are below 0. 1, with the majority falling below 0. 2 and a low standard deviation of less than 0. 02. Factors related to topography and wind patterns are the primary reasons for the lower values observed in the Hong Kong station (Fig. 3). After applying spatial relationships between the column total AAOD from TROPOMI, the results show that the particle concentrations in the column at the Beijing station generally fall within the range of 3 x 10(19)-5 x 10(19) grid(-1). The number concentrations in Hong Kong are relatively lower than those in Beijing. Except for a few grid points where concentrations reach 2. 5 x 10(19) grid(-1), the overall value range in Hong Kong between 1 x 10(19) and 2 x 10(19) grid(-1). For the Seoul station, particle concentration range is from 1. 5 x 10(19) to 3. 0x 10(19) grid(-1) (Fig. 4). By considering the particle size distribution of black carbon aerosols under the core-shell mixed state simulated by the Mie model, the results of the spatial distribution of black carbon aerosol column mass concentration at each grid point (Fig. 6) shows that over 60% of the area of Beijing have concentrations exceeding 500 kg/grid. In the Hong Kong area, apart from certain regions within the Pearl River Delta urban cluster where black carbon column mass exceeds 500 kg/grid, the values in other areas are below 300 kg/grid. In addition, Seoul has an overall column mass concentration of less than 300 kg/grid.

2024-03-01 Web of Science

Study region: The Northwest inland basins of China (NWC).Study focus: Terrestrial water resources, especially groundwater resources, are the main source of water for human activities and for maintaining the stability of the ecological environment in NWC. Excessive consumption of water resources will seriously affect the sustainable utilization of water resources and ecological security in this region. Therefore, it is urgent to clarify the long-term changes in water storage in this area in order to handle the pressure of future water re-sources and the natural environment. Using GRACE satellite datasets and global hydrological models (GHMs) products, this study analyzed spatiotemporal variations in terrestrial water storage anomalies (TWSA), groundwater storage anomalies (GWSA), soil moisture, snow water equivalent, and canopy interception combined anomalies (SSCA) in NWC through the application of the water balance, trend decomposition, and empirical orthogonal decomposition methods. Furthermore, the driving factors of water storage change and feasible water resource manage-ment strategies were discussed. New hydrological insights for the region: TWSA in the NWC has experienced a continuous decline over the past nearly 40 years, while SSCA has shown a weak increasing trend (0.03 cm yr-1). Since the availability of glacial retreat data (2003-2016), glacial water storage in the NWC has decreased by 0.09 cm per year, while TWSA, SSCA, and GWSA have changed at rates of -0.25, 0.02, and -0.18 cm yr-1, respectively. The North Tianshan Rivers Basin has become one of the areas with the most severe groundwater depletion in China. 2005-2010 was a turning period in the changes of TWSA, followed by widespread water loss across the NWC. Glacier and snow melt are the most important factors for the decline of TWSA in the Tianshan mountains area, and over -exploitation of groundwater by human activities is a secondary factor. For other regions, Groundwater losses remain the most significant contributor to TWSA losses. The massive loss of water storage in the Tianshan Mountains area, especially the accelerated retreat of glaciers, will affect the stable water supply to the middle and lower reaches of the oasis region, perhaps leading to increased groundwater extraction, which will threaten regional water security and sustainable development. Developing a water-saving society and implementing inter-basin water transfer arefeasible ways to alleviate the water resource crisis. Conducting a comprehensive analysis of all inland rivers in China helps to facilitate horizontal comparisons between various basins, thereby providing more comprehensive insights of water storage fluctuations. The data on water storage changes, extending back to 1980, provide a longer-term perspective on water resource changes in the region, which can contribute to enhancing water resource security and ecological environ-mental protection.

2023-10-01 Web of Science

Permafrost is a sub-ground phenomenon and therefore cannot be directly observed from space. It is an Essential Climate Variable and associated with climate tipping points. Multi-annual time series of permafrost ground temperatures can be, however, derived through modelling of the heat transfer between atmosphere and ground using landsurface temperature, snow- and landcover observations from space. Results show that the northern hemisphere permafrost ground temperatures have increased on average by about one degree Celsius since 2000. This is in line with trends of permafrost proxies observable from space: surface water extent has been decreasing across the Arctic; the landsurface is subsiding continuously in some regions indicating ground ice melt; hot summers triggered increased subsidence as well as thaw slumps; rock glaciers are accelerating in some mountain regions. The applicability of satellite data for permafrost proxy monitoring has been demonstrated mostly on a local to regional scale only. There is still a lack of consistency of acquisitions and of very high spatial resolution observations. Both are needed for implementation of circumpolar monitoring of lowland permafrost. In order to quantify the impacts of permafrost thaw on the carbon cycle, advancement in wetland and atmospheric greenhouse gas concentration monitoring from space is needed.

2023-10-01 Web of Science

The Karakoram Anomaly has been intensively investigated, but the factors that control this anomaly, such as the glacier velocity, topography, and mass balance, remain poorly understood. To improve our understanding of the velocity, topography, and mass balance of the Karakoram Glacier, in this study, the spatiotemporal variability of four glacier velocities in the Hunza Basin of the Karakoram range were surveyed using co-registration of optically sensed images and correlation (COSI-Corr) on Landsat imagery from 1993-2019. The results show that the velocity of the Gulmit Glacier increases with a rising altitude from the glacier terminal. The three other glaciers initially display high velocity, followed by a decrease from the glacier terminal, with the maximum velocity attained in the middle of the glacier. In addition, the Karakoram glaciers produced a slight mass gain, with all mountain glaciers exhibiting clear regional acceleration from 1993-2019. The ice deformation velocity of the Batura Glacier diminished at an average rate of 8.49 %. However, the topography of the glacier base and physical factors require further analysis to determine their contribution to the observed changes in glacier velocity. In the present work, multi-temporal remote sensing image interpretations were carried out to determine glacier kinematics, which could enhance our understanding of glacier change mechanisms.

2023-01

The freeze-thaw (F/T) process plays a significant role in climate change and ecological systems. The soil F/T state can now be determined using microwave remote sensing. However, its monitoring capacity is constrained by its low spatial resolution or long revisit intervals. In this study, spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) data with high temporal and spatial resolutions were used to detect daily soil F/T cycles, including completely frozen (CF), completely thawed (CT), and F/T transition states. First, the calibrated Cyclone Global Navigation Satellite System (CYGNSS) reflectivity was used for soil F/T classification. Compared with those of soil moisture active and passive (SMAP) F/T data and in situ data, the detection accuracies of CYGNSS reach 75.1% and 81.4%, respectively. Subsequently, the changes in spatial characteristics were quantified, including the monthly occurrence days of the soil F/T state. It is found that the CF and CT states have opposite spatial distributions, and the F/T transition states distribute from the east to the west and then back to the east of the Qinghai-Tibet Plateau, which may be due to varying diurnal temperatures in different seasons. Finally, the first day of thawing (FDT), last day of thawing, and thawing period of the F/T year were analyzed in terms of the changes in temporal characteristics. The temporal variation of thawing is mainly different between the western and eastern parts of the Tibetan Plateau, which is in agreement with the spatial variation characteristics. The results demonstrate that the CYGNSS can accurately detect the F/T state of near-surface soil on a daily scale. Moreover, it can complement traditional remote sensing missions to improve the F/T detection capability. It can also expand the applications of GNSS-R technology and provide new avenues for cryosphere research.

2023-01-01 Web of Science
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共27条,3页