共检索到 3

Seismic events and wave action can induce volumetric strain (ev) accumulation in saturated sandy soils, leading to damage to the ground surface and structures. A quantifiable relationship exists between the generation of ev in sandy soils under drained conditions and the development of pore water pressures under undrained conditions. In this study, the impact of relative density (Dr), cyclic stress path, and stress level on the characteristics of volumetric strain (ev) generation in saturated coral sands (SCS) was evaluated through drained tests employing various cyclic stress paths. The test findings demonstrate that the rate of ev accumulation in SCS is notably affected by the cyclic stress path. The rise in peak volumetric strain (evp) in SCS, as a function of the number of cycles, conforms to the arctangent function model. The unit cyclic stress ratio (USR) was employed as an indicator of complex cyclic loading levels. It was determined that coefficient (evp)u is positively correlated with USR at a specific Dr. At the same Dr, coefficient CN1 exhibits a positive correlation with USR, while coefficient CN2 displays a negative correlation with USR, following a power-law relationship. Irrespective of cyclic loading conditions, evp rises with an increase in generalized shear strain amplitude (yga). A power function model was established to represent the relationship between evp and yga. The coefficient 41 decreases as Dr increases. Comparisons were drawn between evp and yga for Ottawa sand and SCS. The results indicate that, as Dr of Ottawa sand increases from 30 % to 70 %, the coefficient 41 decreases from 1.54 to 0.73, representing a reduction of approximately 53 %. In contrast, under identical conditions, the coefficient 41 of SCS exhibits a less pronounced decrease, from 1.16 to 0.79, corresponding to a reduction of roughly 32 %. These observations suggest that variations in Dr have a more substantial impact on generating evp in Ottawa sand compared to SCS.

期刊论文 2025-03-01 DOI: 10.1016/j.soildyn.2024.109198 ISSN: 0267-7261

The complex deformation of saturated anisotropic coral sand under cyclic loading is investigated in undrained cyclic triaxial tests. From the results, the interplay between consolidation ratio (kc) and cyclic stress ratio (CSR) greatly affects the evolution of axial strain in coral sand, categorized as residual and fluctuating via inherent and stress-induced anisotropy. Correspondingly, two axial strain generation modes are observed in saturated coral sand: cyclic mobility and cumulative plastic deformation. For isotropic consolidation, the residual strain of loose coral sand increases by 19.5 % as CSR increases by 0.1, indicating the influence of inherent anisotropy on deformation. With decreasing CSR and increasing kc, the mode shifts from cyclic mobility to cumulative plastic deformation. For anisotropic consolidation with kc = 2.0, the cumulative plastic strain exceeds 95 % for loose coral sand. A novel empirical model is proposed to predict the progression of both residual and fluctuating axial strain in saturated coral sand, and compared with experimental data, the prediction error for both peak and valley axial strain is within 10 %.

期刊论文 2024-09-01 DOI: 10.1016/j.soildyn.2024.108861 ISSN: 0267-7261

To assess the stability of coral sand foundation in complex environments, the undrained monotonic and cyclic shear tests were conducted in the laboratory. The test results indicate that the coral sand exhibits pronounced inherent anisotropy in the vertical direction. Under complex consolidation conditions, significant stress-induced anisotropy can also be observed. With increasing generalized shear strain (gamma g), both the generalized monotonic and cyclic shear modulus (Ggm, Ggd) exhibit a decreasing trend irrespective of consolidation ratio (kc) and inclinations of major principal stress (alpha c). Additionally, a strong linear relationship is evident between Ggm and Ggd, suggesting a consistent reduction pattern of Gg for various loading modes. The investigation on the inclination of the failure line (phi FL) for monotonic and cyclic shear is also conducted. The test results show that consolidation conditions have minimal influence on phi FL during monotonic shear, but exert a significant impact on phi FL during cyclic shear. A novel index called the consolidation parameter (eta) is proposed to quantitatively assess the relationship between kc, alpha c and phi FL. The average values of phi FL for cyclic shear increase with increasing eta, indicating the non-failure zone of coral sand during undrained cyclic shear will shrink with higher values of kc and alpha c.

期刊论文 2024-09-01 DOI: 10.1016/j.oceaneng.2024.118238 ISSN: 0029-8018
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页