Energy piles, which serve the dual functions of load-bearing and geothermal energy exchange, are often modeled with surrounding soil assumed to be either fully saturated or completely dry in existing design and computational methods. These simplifications neglect soil saturation variability, leading to reduced predictive accuracy of the thermomechanical response of energy piles. This study proposes a novel theoretical framework for predicting the thermo-hydro-mechanical (THM) behavior of energy piles in partially saturated soils. The framework incorporates the effects of temperature and hydraulic conditions on the mechanical properties of partially saturated soils and pile-soil interface. A modified cyclic generalized nonlinear softening model and a cyclic hyperbolic model were developed to describe the interface shear stress-displacement relationship at the pile shaft and base, respectively. Governing equations for the load-settlement behavior of energy piles in partially saturated soils were derived using the load transfer method (LTM) and solved numerically using the matrix displacement method. The proposed approach was validated against experimental data from both field and centrifuge tests, demonstrating strong predictive performance. Specifically, the average relative error (ARE) was less than 15% for saturated soils and below 23% for unsaturated soils when evaporation effects were considered. Finally, parametric analyses were conducted to assess the effects of flow rate, groundwater table position, and softening parameters on the THM behavior of energy piles. This framework can offer a valuable tool for predicting THM behavior of energy piles in partially saturated soils, supporting their broader application as a sustainable foundation solution in geotechnical engineering.
The present work introduces an analytical framework based on the limit-equilibrium method for the determination of the local factor of safety (FS) and global factor of safety (FSG), and local displacements along the critical slip surface using the Morgenstern-Price (MP) method of slices. This proposed work computes displacements along the critical slip surface in addition to a single FSG. The unsaturated shear strength models, in conjunction with the soil-water characteristic curve (SWCC), are considered. The MP-based equilibrium equations to determine FSG are utilized as an objective function in the metaheuristic search algorithm of particle swarm optimization to determine the critical center, critical radius, and minimum FSG for unsaturated finite slopes. It is recommended to use a particle size of 75 and conduct 50 iterations for optimal results. The effects of SWCC fitting parameters on the critical slip surface, FSG, point FS, and point displacements are also investigated. Two distinct benchmark slope scenarios with and without negative pore water considerations are utilized in the current study. This approach enables a detailed investigation into the influence of various unsaturated soil parameters, such as af (related to the air-entry value), nf (related to the slope of the SWCC), and mf (related to the residual water content), as well as constitutive model parameters including the linear shear modulus (G) and the fitting parameter (rho). The maximum displacement occurs at the slope's top crest. Under benchmark conditions, the first scenario shows a reduction in point displacement by 3.30%, 1.98%, and 10.23% for SWCC-1, SWCC-2, and SWCC-3, respectively. However, in the second scenario with SWCC-3, the critical slip surface's position changes, affecting local displacements. This results in an increase of 32.72% (i.e., from 21.45 to 28.47 mm) in point displacement at the top when comparing SWCC-3 with no SWCC consideration. The current study advocates that the effect of fitting parameters of the SWCC should be used to better understand the local FS and displacement, because the critical slip surface is contingent on the values of the SWCC. Ignoring SWCC parameters can lead to an underestimation of slope displacement, because they significantly influence the critical slip surface position and displacement magnitude. Their inclusion is essential for accurately assessing slope stability and preventing errors in displacement prediction.
The laboratory experiment is an effective tool for the rapid assessment of the unsaturated soil slopes instability induced by extreme weather events. However, traditional experimental methods for unsaturated soils, including the measurement of the soil-water characteristic curve (SWCC), soil hydraulic conductivity function (SHCF), shear strength envelope, etc., are time-consuming. To overcome this limitation, a rapid testing strategy is proposed. In the experimental design, the water saturation level is selected as the control variable instead of the suction level. In the suction measurement, the suction monitoring method is adopted instead of the suction control method, allowing for simultaneous testing of multiple soil samples. The proposed rapid testing strategy is applied to measure the soil hydro-mechanical properties over a wide suction/saturation range. The results demonstrate that: (1) only 3-4 samples and 2-5 days are in need in the measurement of SWCC; (2) 7 days is enough to determine a complete permeability function; (3) only 3 samples and 3-7 days are in need in the measurement of the shear strength envelope; (4) pore size/water distribution measurement technique is fast and recommended as a beneficial supplement to traditional test methods for unsaturated soils. Our findings suggest that by employing these proposed rapid testing methods, the measurement of pivotal properties for unsaturated soils can be accomplished within one week, thus significantly reducing the temporal and financial costs associated with experiments. The findings provide a reliable experimental approach for the rapid risk assessment of geological disasters induced by extreme climatic events.
Energy pile groups transmit geothermal energy and have attracted widespread attention as one of new building energy-saving technologies. Accurately predicting the time-dependent behaviors of energy pile groups is a challenge, given the complex thermal and mechanical interactions between piles, surrounding soils and the pile cap. This study presents a semi-analytical solution for analyzing energy pile groups within heat exchangers. Utilizing the transformed differential quadrature method, a flexible coefficient matrix for the saturated surrounding soils is acquired, which accounts for both consolidation and heat transfer. The piles are segmented, and the discrete solving equations considering thermal stresses and expansion are formulated. To accurately reflect the interactions among piles-to-piles, piles-to-soils and piles-to-pile cap, the coupled matrix equations are constructed with involving both the displacement coordination and the force equilibrium at the pile-soil interface as well as the pile cap. The validity of the proposed solution is confirmed through comparisons with results from onsite tests and simulations using COMSOL. Pivotal parameters including temperature variations, pile spacing, and the relative stiffness are discussed through examples. Compared with traditional simulation and field test, the proposed solution enables fast and accurate prediction of displacement and load distribution across pile groups, facilitating the safety evaluation of heat exchangers.
Previous studies provide ample experimental evidence highlighting the effect of temperature on the volume change response of unsaturated soils. However, analytical efforts to capture the temperature dependency of dilatancy under shear stresses are notably scarce. This paper aims to fill this gap by presenting a thermodynamics-based dilatancy model incorporating the influence of the degree of saturation, temperature, soil type, and suction. The model is derived from the first law of thermodynamics, formulated in terms of stored and dissipative energies. Various sources of energy dissipation, including entropy, water flow, friction, as well as energies associated with volume change and rearrangement of soil grains, are considered. The temperature-dependent model is calibrated, and its accuracy is validated using data from 27 triaxial experiments available in the literature. This data set encompasses tests conducted under different temperatures, suctions, stress states, and initial void ratios. The accuracy of the proposed model is compared to three classic models present in the literature that do not account for suction and temperature. The findings demonstrate that the model adeptly captures the complex stress-dilatancy behavior of unsaturated soils with considerably higher accuracy than alternative models. Further, the proposed model's application to simulate the volume change response is demonstrated for two soils under varying saturation levels. The model can readily be incorporated into constitutive modeling of unsaturated soils under thermo-hydro-mechanical conditions.
The parameters of the soil water characteristic curve (SWCC) play a pivotal role in the examination of unsaturated soil behavior. This study employs three machine learning models-random forest (RF), extreme gradient boosting (XGBoost), and multiexpression programming (MEP)-to predict the SWCC using key soil properties. Among them, the RF model demonstrated the most robust performance in SWCC prediction. The Shapley Additive Explanation (SHAP) analysis further reveals that suction is the most influential factor affecting SWCC predictions, with other input parameters also contributing significantly. Additionally, the MEP model offers a straightforward expression for SWCC estimation and, thus, proved practical for predicting embankment responses and exhibited superior accuracy over traditional methods, such as the Arya and Paris model (ACAP). For a precise assessment of the hydromechanical response of the embankment subjected to infiltration, an increase in pore pressure is observed when employing the MEP model compared to the ACAP model for fine-grained soils. The findings emphasize the potential of RF and MEP in enhancing SWCC prediction and their practical implications for soil engineering applications.
A unified approach for solving the one-dimensional consolidation equation is introduced for the first time in geotechnical engineering. The one-dimensional consolidation partial differential equation is solved through a combined approach employing the complementary functions method (CFM) and Laplace transform. Using the coded program prepared in the FORTRAN, various time-varying loads are applied to different soil types to obtain the response of excess pore water pressure. The comparison demonstrated an excellent agreement, thus proving the effectiveness, applicability, and capability of the proposed approach in solving the governing canonical equations. The study's findings reveal that sand soil (high permeability) exhibits a less pronounced cyclic response under various cyclic loads compared to other soil types, whereas clay soil (low permeability) exhibits significant periodicity in its response. The investigation into the effect of soil properties on one-dimensional consolidation indicates that the dissipation of excess pore water pressure occurs relatively quickly in the case of highly permeable soils and gradually slows down as the soil permeability decreases. Due to the lower permeability of clay soil, the full dissipation of excess pore water pressure takes a much longer time compared to other soil types. Consequently, this process occurs over a more extended period in clay soil.
Soil-water characteristics, which vary with hydrological events such as rainfall, significantly influence soil strength properties. These properties are crucial determinants of the bearing capacity of foundations. Moreover, shear strength characteristics of soils are inherently spatially variable, and considering them as homogeneous parameters can result in unreliable design. This paper presents a probabilistic study of the two-dimensional bearing capacity of a strip footing on spatially random, unsaturated fine-grained soil using Monte Carlo simulation. The study employs the hydro-mechanical random finite difference method through MATLAB programming along with FLAC2D software. The undrained shear strength under saturated conditions is modelled as random fields using a log-normal distribution. The generated random values are then made depth-dependent by correlating them with matric suction. Initially, matric suction is assumed to be under a hydrostatic condition and decreases linearly with depth to zero at the groundwater level. Afterward, unsaturated soil is subjected to rainfall with different durations, resulting in the non-linear distribution of matric suction and, consequently, the mean value of undrained shear strength in depth. The results showed that rainfall infiltration impacts the strength characteristics of near-surface heterogeneous strata, leading to significant effects on the bearing capacity and failure mechanism of footing.
This study investigates the cyclic response of unsaturated soils, focusing on the dynamic properties such as damping characteristics and soil stiffness, under varying matric suction and confining stress conditions during cyclic triaxial loading. Despite challenges in evaluating unsaturated soils compared to saturated ones, cyclic triaxial testing emerges as an efficient method for exploring their cyclic behavior. Through a series of experiments with different loading frequencies, stress levels, and suction conditions, the research reveals that as matric suction increases, stiffness rises while the damping ratio decreases. Additionally, comparisons between isotropic and anisotropic stress conditions show that the shear modulus is higher under anisotropic consolidation due to particle reorientation. The study proposes a semi-empirical equation to address the stress and suction dependency of shear modulus, finding a consistent trend between predicted and measured values. Ultimately, the findings underscore the significance of stress state, suction, cyclic shear strain, number of loading cycles and confining pressure in determining soil shear modulus.
This study investigated contact distribution and force anisotropy associated with elliptical particles in granular soils within the pendular state of unsaturated soils, employing the discrete element method. The high cost of determining the micromechanical factors through laboratory tests justifies the use of this method. The macromechanical behavior of unsaturated granular soils depends on interparticle contact characteristics and liquid bridge behavior. The findings indicated that as the degree of saturation increased, both the shear strength and the anisotropy of the normal and shear forces initially rose before subsequently declining. Notably, the contact normal anisotropy exhibited minimal variation with changes in saturation. Furthermore, it was observed that as confining pressure increased at a specific eccentricity and degree of saturation, the associated anisotropies exhibited a continuous increase. In this context, as the eccentricity of the particles increased, the peak shear strength and its corresponding anisotropies initially increased and then decreased. Conversely, residual soil strength showed a consistent increase in shear strength and anisotropy with rising eccentricity.