共检索到 5

Estimating Top-of-Atmosphere (TOA) flux and radiance is essential for understanding Earth's radiation budget and climate dynamics. This study utilized polar nephelometer measurements of aerosol scattering coefficients at 17 angles (9-170 degrees), enabling the experimental determination of aerosol phase functions and the calculation of Legendre moments. These moments were then used to estimate TOA flux and radiance. Conducted at a tropical coastal site in India, the study observed significant seasonal and diurnal variations in angular scattering patterns, with the highest scattering during winter and the lowest during the monsoon. Notably, a prominent secondary scattering mode, with varying magnitude across different seasons, was observed in the 20-30 degrees angular range, highlighting the influence of different air masses and aerosol sources. Chemical analysis of size-segregated aerosols revealed that fine-mode aerosols were dominated by anthropogenic species, such as sulfate, nitrate, and ammonium, throughout all seasons. In contrast, coarse-mode aerosols showed a clear presence of sea-salt aerosols during the monsoon and mineral dust during the pre-monsoon periods. The presence of very large coarse-mode non-spherical aerosols caused increased oscillations in the phase function beyond 60 degrees during the pre-monsoon and monsoon seasons. This also led to a weak association between the phase function derived from angular scattering measurements and those predicted by the Henyey-Greenstein approximation. As a result, TOA fluxes and radiances derived using the Henyey-Greenstein approximation (with the asymmetry parameter as input in the radiative transfer model) showed a significant difference- up to 24% in seasons with substantial coarse-mode aerosol presence- compared to those derived using the Legendre moments of the phase function. Therefore, TOA flux and radiance estimates using Legendre moments are generally more accurate in the presence of complex aerosol scattering characteristics, particularly for non-spherical or coarse-mode aerosols, while the Henyey-Greenstein phase function may yield less accurate results due to its simplified representation of scattering behavior.

期刊论文 2025-04-01 DOI: 10.1016/j.jqsrt.2025.109365 ISSN: 0022-4073

Aerosol optical properties, including absorption and scattering coefficients (B-abs, and B-scat), extinction coefficient (B-ext), single scattering albedo (SSA), and so forth, are critical metrics to estimate the radiative balance of the atmosphere. However, their ground measurements are sparsely distributed in the world, where Central Asia is void in these measurements. We had been performing the measurements of AOPs and BC with a photoacoustic extinctiometer (PAX) in Jimunai, a border town of China neighboring Kazakhstan, Central Asia, from Aug 2016 to Apr 2019. This three-year study first reported statistically significant trends of B-abs, B-scat, B-ext, SSA, and derived concentrations of BC (Mann-Kendall trend test, p-value 0.05) in the Central-Asian area. B-abs and B-scat show increasing trends and SSA was decreasing determined by the greater increasing pace of B-abs than B-scat. Seasonal and diurnal variations of the AOPs were associated with climate shift and residents' commute activity, respectively. The difference in the magnitudes and trends of AOPs between the measurements and satellites' observations advise that more care should be invested when choosing remote-sensing data to represent the AOPs at a specific site. The increasing trend of derived BC concentrations is reflected in the deposition record of BC in a snowpit of the nearby Muz Taw glacier. We suppose that the dramatically increasing BC particles emitted from Jimunai are significant factors triggering the melting of the adjacent mountain glaciers. The outflow of dust from the neighboring Gurbantiinggiit Desert could occasionally invade into Jimunai and deteriorate the local air quality, as evidenced by a probable dust event captured by the PAX on Feb 15, 2018. Finally, we outlook the future perspectives of measurements in Jimunai as a long-standing station.

期刊论文 2024-06-01 DOI: http://dx.doi.org/10.1021/acsearthspacechem.0c00306 ISSN: 2472-3452

Continuous long-term monitoring of black carbon (BC) mass concentration and aerosol light scattering coefficient (sigma(SCA)), supplemented by number size distribution and chemical composition, are utilized in this study to understand the temporal changes in aerosol properties, associated source processes and radiative effects at Ny-angstrom lesund (79 degrees N) in the Svalbard Archipelago. A statistically significant decreasing trend in BC (- 24.7 ng m(-3) decade(-1)) is observed during spring of 2010-2019. In contrast, sigma SCA depicted a general increasing trend (5.2 Mm(-1) decade(-1)) during 2011-2016. BC and sigma(SCA) were higher during winter and spring. Aerosol single scattering albedo was highest in May similar to 0.95 (during spring) and lowest in September similar to 0.87 (during summer). Fractional share of BC to total aerosol mass was higher in winter and summer. Anthropogenic SO42- and NO3- (after ssNa(+)) species dominated the summer, when total number and mass concentrations of aerosols were at their minimum. Elemental Carbon (EC) and Organic Carbon (OC) showed higher concentrations in spring with EC-to-OC ratio similar to 0.08 - 0.22. The columnar AOD varied between 0.01 and 0.20 (annual mean similar to 0.09), resulting in aerosol radiative forcing (in the top of the atmosphere) similar to 0.15 - 2.69 Wm(-2) in the month of April (during spring). Potential source contribution function (PSCF) revealed the dominant source areas to be over Europe and Russia in terms of contributing to the seasonal high BC mass concentrations at Ny-angstrom lesund. Our study has also revealed an unusual impact of biomass burning aerosols (advected from the Alaska wildfire) during July 2015.

期刊论文 2021-12-01 DOI: 10.1016/j.polar.2021.100700 ISSN: 1873-9652

The rapid changes in the pattern of atmospheric warming as well as the degradation of glaciers in the Himalayas point to the inevitability of accurate source characterization and quantification of the impact of aerosols. In this regard, optical and chemical properties of aerosols, and their role in radiative effects are examined over a remote high-altitude site Lachung (27.4 degrees N, 88.4 degrees E, 2700 m a.s.l.) in the eastern Himalayas during August-2018 to February-2020. It is found that the sulphate (SO42- ) and carbonaceous aerosols (both organic carbon - OC and elemental carbon - EC) significantly contribute to the total aerosol mass loading in winter (DJF) and spring (MAM), resulting in high values of scattering and absorption coefficients. Aerosol single scattering albedo (SSA) is relatively higher in winter ( 0.85) due to a significantly higher amount of OC (OC/EC > 8). However, SSA 0.8 in spring despite of higher SO42- concentrations (SO42- /EC > 4.0 and SO42-/OC - 1.0) than winter. A reverse pattern is seen in summer-monsoon (JJAS) having lower SO42-/EC < 2 and SO42- /OC < 0.5, resulting in SSA as low as -0.64. The seasonal values of aerosol direct radiative forcing in the top of the atmosphere (DRFTOA) are as high as -2.9 +/- 1.2 Wm- 2 during the period of abundant OC in winter and -2.8 +/- 0.5 Wm- 2 during the period of abundant SO42- in spring. The combined effect of carbonaceous and SO42- aerosols on the surface cooling is highest in spring (-16.7 +/- 4.9 Wm- 2). DRF in the atmosphere is also - 34% higher in spring (13.8 +/- 4.5 Wm- 2, which translates to an atmospheric heating rate of - 0.39 K day-1), than in winter. The seasonal pattern of forcing influenced by the heterogeneous sources and chemical composition of aerosols over the eastern Himalayan site is significantly influenced by the transport of aerosols from the Indo-Gangetic Plains of India.

期刊论文 2021-12-01 DOI: 10.1016/j.atmosres.2021.105799 ISSN: 0169-8095

Aerosol scattering and absorption characteristics were investigated at an urban megacity Delhi in the western Indo-Gangetic Basin (IGB) during the period from October 2011 to September 2012 using different in-situ measurements. The scattering coefficient (sigma(sp) at 550 nm) varied between 71 and 3014 Mm(-1) (mean similar to 710 +/- 615 Mm(-1)) during the entire study period, which was about ten times higher than the absorption coefficient (sigma(abs) at 550 nm similar to 67 +/- 40 Mm(-1)). Seasonally, sigma(sp) and sigma(abs) were substantially higher during the winter/post-monsoon periods, which also gave rise to single scattering albedo (SSA) by similar to 5%. The magnitude of SSA (at 550 nm) varied between 0.81 and 0.94 (mean: 0.89 +/- 0.05). Further, the magnitude of scattering Angstrom exponent (SAE) and back-scattering Angstrom exponent (BAE) showed a wide range from -1.20 to 1.57 and -1.13 to 0.87, respectively which suggests large variability in aerosol sizes and emission sources. Relatively higher aerosol backscatter fraction (b at 550 nm) during the monsoon (0.25 +/- 0.10) suggests more inhomogeneous scattering, associated with the coarser dust particles. However, lower value of b during winter (0.13 +/- 0.02) is associated with more isotropic scattering due to dominance of smaller size particles. This is further confirmed with the estimated asymmetry parameter (AP at 550 nm), which exhibits opposite trend with b. The aerosol optical parameters were used in a radiative transfer model to estimate aerosol radiative forcing. A mean radiative forcing of -61 +/- 22 Wm(-2) (ranging from -111 to -40 Wm(-2)) was observed at the surface and 42 24 Wm(-2) (ranging from 18 to 87 Wm(-2)) into the atmosphere, which can give rise to the mean atmospheric heating rate of 1.18 K day(-1).

期刊论文 2018-06-01 DOI: 10.1016/j.atmosres.2018.01.018 ISSN: 0169-8095
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页