Aerosols affect the radiative forcing of the global climate and cloud properties. Organic aerosols are among the most important, yet least understood, components of the sensitive Tibetan Plateau atmosphere. Here, the concentration of and the seasonal and diurnal variations in biomass burning and biogenic aerosols, and their contribution to organic aerosols in the inland Tibetan Plateau were investigated using molecular tracers. Biomass burning tracers including levoglucosan and its isomers, and aromatic acids showed higher concentrations during winter than in summer. Molecular tracers of primary and secondary biogenic organic aerosols were more abundant during summer than those in winter. Meteorological conditions were the main factors influencing diurnal variations in most organic molecular tracers during both seasons. According to the tracer-based method, we found that biogenic secondary organic aerosols (38.5 %) and fungal spores (14.4 %) were the two dominant contributors to organic aerosols during summer, whereas biomass burning (15.4 %) was an important aerosol source during winter at remote continental background site. Results from the positive matrix factor source apportionment also demonstrate the importance of biomass burning and biogenic aerosols in the inland Tibetan Plateau. During winter, the long-range transport of biomass burning from South Asia contributes to organic aerosols. In contrast, the precursors, biogenic secondary organic aerosols, and fungal spores from local emissions/long-range transport are the major sources of organic aerosols during summer. Further investigation is required to distinguish between local emissions and the long-range transport of organic aerosols. In-depth insights into the organic aerosols in the Tibetan Plateau are expected to reduce the uncertainties when evaluating aerosol effects on the climate system in the Tibetan Plateau.
Brown carbon is a hotspot in the field of atmospheric carbonaceous aerosol research. It has significant influence on regional radiative forcing and exerts climatic effects due to its apparent absorbance in the near ultraviolet-visible region. Brown carbon is mainly derived from incomplete combustion of biomass or coal, as well as secondary sources, such as a series of atmospheric photochemical reactions from volatile organic compounds. Although the composition of brown carbon is complex, high-resolution mass spectrometry, with its ultra-high mass resolution and precision, enables elucidation of the characteristics of the organic components of brown carbon at the molecular level. Here, high-resolution mass spectrometry combined with traditional analytical methods was used for the study of brown carbon. The development of high-resolution mass spectrometry for brown carbon separation is reviewed, as well as compositional analysis, source apportionment, and formation mechanism of brown carbon based on high-resolution data. In addition, the issues and prospects for the application of high-resolution mass spectrometry to evaluate brown carbon are discussed.
Secondary organic aerosols (SOA), a subset of organic aerosols that are chemically produced in the atmosphere, are included in climate modeling calculations using very simple parameterizations. Estimates on their shortwave forcing on climate span almost two orders of magnitude, being potentially comparable to sulfate direct forcing. In the longwave, a neglected part of the spectrum when it comes to SOA, the direct SOA forcing could exceed that of sulfate and black carbon, although in absolute values, it is much weaker than the shortwave forcing. Critical for these estimates is the vertical distribution of the climate active agents, pointing to SOA temperature-dependent volatility. Over the last few years, research also revealed the highly oxidized character of organic aerosol and its chemical aging in the atmosphere that partially leads to the formation of brown carbon, an absorbing form of organic aerosol. This review summarizes critical advances in the understanding of SOA behavior and properties relevant to direct climate forcing and puts them in perspective with regard to primary organic aerosol and brown carbon. These findings also demonstrate an emerging dynamic picture of organic aerosol that has not yet been integrated in climate modeling. The challenges for the coming years in order to reduce uncertainties in the direct organic aerosol climate impact are discussed. High priority for future model development should be given to the dynamic link between white and brown organic aerosol and between primary and secondary organic aerosol. The SOA temperature-dependent volatility parameterizations and wavelength-dependent refractive index should be also included.