共检索到 3

Conifer mountain forests influence numerous human populations by providing a host of critical economic, sociological, and ecosystem services. Although the causes of the elevational, transitional boundaries of these forests (i.e., upper and lower timberlines) have been questioned for over a century, these investigations have focused predominately on the growth limitations of saplings or mature trees at the upper alpine boundary. Yet, the elevational movement of timberlines is dependent initially on new seedling establishment in favorable microsites that appear to be generated by ecological facilitation. Recent evidence suggests that this facilitation is critical during the initial 1-2 years of growth when survival may be less than a few percent, only cotyledons are present, and survival occurs only in favorable microsites created by inanimate objects (e.g., boulders, dead stems), microtopography, or already established vegetation. Dramatic changes in tree form (e.g., krummholz mats) across the timberline ecotone also plays an important role in generating microsite facilitation. These favorable, facilitated microsites have been characterized broadly as experiencing low sky exposure during summer (day and night) and leeward wind exposure during winter that generates protective snow cover, all of which are needed for new seedling survival. Thus, determining the specific microclimate and edaphic characteristics of favorable microsites, and their frequency at timberline, will provide a more mechanistic understanding and greater predictability of the future elevation and extent of conifer mountain forests. In addition, although the ecophysiological advantages of a needle-like leaf morphology is well established for adult conifer trees, the advantage of this phylogenetically unique trait in emergent seedlings has not been thoroughly evaluated. Understanding seedling ecophysiology and the functional morphology that contributes to survival, plus the nature and frequency of favorable microsites at timberline, will enable more reliable estimates of future elevational shifts in conifer mountain forests. This approach could also lead to the development of a valuable and sensitive tool for forest managers interested in evaluating future changes in these forests under increased large-scale infestation and drought mortality, as well as for current scenarios of predicted climate change.

期刊论文 2019-04-24 DOI: 10.3389/ffgc.2019.00009

Fire severity is increasing across the boreal forest biome as climate warms, and initial post-fire changes in tree demographic processes could be important determinants of long-term forest structure and carbon dynamics. To examine soil burn severity impacts on tree regeneration, we conducted experimental burns in summer 2012 that created a gradient of residual post-fire soil organic layer (SOL) depth within a mature, sparse-canopy Cajander larch (Larix cajanderi Mayr.) forest in the Eastern Siberian Arctic. Each fall from 2012 to 2016, we added larch seeds to plots along the burn severity gradient. We tracked density of new larch germinants and established seedlings (alive >= 1 year) during subsequent growing seasons, along with changes in seedbed conditions (permafrost thaw depth, moisture, and temperature). Over the study, a cumulative total of 17 and 18 new germinants m(-2) occurred in high and moderate severity treatments, respectively, while germinants were rare in unburned and low severity treatments ( 50%) germinated in summer 2017, following a mast event in fall 2016, suggesting safe sites for germination were not fully occupied in previous years despite seed additions. By 2017, established seedling density was similar to 5 times higher on moderate and high severity treatments compared to other treatments. Cumulative total density of new germinants and established seedlings increased linearly with decreasing residual SOL depth, as did thaw depth, soil moisture, and soil temperature. Our findings suggest that increased soil burn severity could improve seedbed conditions and increase larch recruitment, assuming seed sources are available. If these demographic changes persist as stands mature, a climate-driven increase in soil burn severity could shift forest structure from sparse-canopy stands, which dominate this region of the Siberian Arctic, to high density stands, with potential implications for carbon, energy, and water cycling.

期刊论文 2018-05-15 DOI: 10.1016/j.foreco.2018.03.008 ISSN: 0378-1127

Fine-scale disturbance can increase seed access to suitable substrates, facilitating germinant emergence and survival, which are necessary elements for treeline advance. We conducted an experiment to test this hypothesis in a white spruce (Picea glauca) treeline ecotone in southwest Yukon, Canada. Sixty seed germination quadrats were established at two elevations (treeline and alpine tundra) and subjected to three levels of simulated disturbance. We sowed 125 seeds in half of the quadrats (30) and measured their emergence and survival over 3 years. Soil temperature, moisture, and organic depth were recorded in all treatments. Treeline quadrats had significantly greater seedling emergence and survival than alpine tundra quadrats. Mean soil temperature, moisture, and organic layer depth were all greater in treeline quadrats. Partially scarified quadrats had the highest germinant emergence compared to unscarified and completely scarified quadrats. Completely scarified quadrats had the highest temperature range and the lowest soil moisture. The results indicate that moderate levels of disturbance can positively influence seedling emergence, while more severe disturbance can lead to high temperature ranges and moisture loss that negate the benefits of lower interspecific competition. Collectively, our findings suggest that fine-scale disturbance can play a significant role in influencing seedling presence in treeline ecotones.

期刊论文 2018-01-01 DOI: 10.1080/02723646.2018.1434926 ISSN: 0272-3646
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页