共检索到 7

Cloud and incremental dynamic analysis (IDA) are the two most commonly used methods for seismic fragility analysis. The two methods differ significantly in the number of ground motions and whether these motions are scaled. This paper designed a random selection procedure to thoroughly discuss the influence of ground motion combinations encompassing different numbers of motions on the Cloud-based and IDA-based seismic fragility analysis for underground subway station structures. Focusing on a shallow-buried single-story station structure, a nonlinear dynamic time-history finite element analysis model of soil-structure interaction was developed. 400 ground motions were selected for random combination to perform Cloud-based seismic fragility analysis, and 20 ground motions were selected for random combination to perform IDA-based analysis. The results showed that the number of ground motions has a significant influence on the seismic fragility analysis in both Cloud and IDA, especially on the prediction of damage probability for higher seismic performance levels and when the PGA exceeded 0.3 g. In regions with a low probability of strong earthquakes, this paper recommended using no fewer than 10 and 220 ground motions in the IDA-based and Cloud-based seismic fragility analyses, respectively. In regions with a high probability of strong earthquakes, the optimal number of ground motions should be increased to 300 for Cloud-based analysis and 15 for IDA-based analysis.

期刊论文 2025-08-01 DOI: 10.1016/j.soildyn.2025.109386 ISSN: 0267-7261

As an important coastal protective structure, the breakwater is prone to failure due to foundation damage under seismic actions. However, the seismic performance evaluation of breakwaters has received little attention. This study conducts a seismic fragility analysis of composite breakwaters constructed on liquefiable foundations. By adopting a performance-based seismic design (PBSD) approach and considering the record-to-record (RTR) variability of ground motions, the seismic performance of the breakwaters is assessed over their entire lifecycle. Based on the results of the parameter sensitivity analysis, the reinforcement schemes were proposed in terms of delaying foundation liquefaction and limiting the lateral displacement of liquefied soil. The results of the seismic intensity measure (IM) parameter selection indicate that the commonly used peak ground acceleration (PGA) exhibits a weak correlation with the seismic response of the breakwater, whereas the cumulative absolute velocity (CAV) has a strong correlation. The comparison of the reinforcement schemes shows that the Dense Sand Column (DC) scheme provides significant reinforcement effects, while the Concrete Sheet Pile (CSP) scheme is more suitable for reinforcing existing breakwaters. The seismic performance assessment framework can also be applied to other structures where structural damage is closely related to foundation deformation, such as caisson quays and embankments.

期刊论文 2025-06-01 DOI: 10.1016/j.oceaneng.2025.121013 ISSN: 0029-8018

Seismic risk assessment is pivotal for ensuring the reliability of prefabricated subway stations, where selecting optimal intensity measures (IMs) critically enhances probabilistic seismic demand models and fragility analysis. While peak ground acceleration (PGA) is widely adopted for above-ground structures, its suitability for underground systems remains debated due to distinct dynamic behaviors. This study identifies the most appropriate IMs for soft soil-embedded prefabricated subway stations at varying depths through nonlinear finite element modeling and develops corresponding fragility curves. A soil-structure interaction model was developed to systematically compare seismic responses of shallow-buried, medium-buried, and deep-buried stations under diverse intensities. Incremental dynamic analysis was employed to construct probabilistic demand models, while candidate IMs (PGA, PGV, and vrms) were evaluated using a multi-criteria framework assessing correlation, efficiency, practicality, and proficiency. The results demonstrate that burial depth significantly influences IM selection: PGA performs optimally for shallow depths, peak ground velocity (PGV) excels for medium depths, and root mean square velocity (vrms) proves most effective for deep-buried stations. Based on these optimized IMs, seismic fragility curves were generated, quantifying damage probability characteristics across burial conditions. The study provides a transferable IM selection methodology, advancing seismic risk assessment accuracy for prefabricated underground infrastructure. Through a systematic investigation of the correlation between IM applicability and burial depth, coupled with the development of fragility relationships, this study establishes a robust technical framework for enhancing the seismic performance of subway stations, and provides valuable insights for seismic risk assessment methodologies in underground infrastructure systems.

期刊论文 2025-04-10 DOI: 10.3390/sym17040580

Probability-based seismic fragility analysis provides a quantitative evaluation of the seismic performance exhibited by structures. This study introduces a framework to perform seismic fragility analysis of utility tunnel and internal pipeline system considering wave passage effect of the ground motion spatial variation. The numerical model of a double-beam system resting on a nonlinear foundation is established to simulate the soiltunnel-pipeline interactions. 17 pairs of earthquake records are chosen and scaled as inputs at the outcrop. One-dimensional (1D) free-field analyses are conducted to obtain the ground motion time histories at the bottom slab of the utility tunnel, and then incremental dynamic analysis (IDA) is performed for the utility tunnel-internal pipeline system. The damage states (DSs) are defined by the maximum joint opening for the utility tunnel and maximum strain for the internal pipeline, and the peak bedrock velocity (PBV) is determined to be the most representative intensity measure (IM) for developing the seismic fragility curves. The seismic fragility curves of the system are constructed using the joint probabilistic seismic demand model (JPSDM) and Monte Carlo sampling method. The research findings indicate that: (1) the framework proposed in this study is suitable for the fragility assessment of long-extended utility tunnel-internal pipeline system; (2) the utility tunnel and internal pipeline as a system exhibit greater fragility compared to either one of the components, and the JPSDM and Monte Carlo sampling method for the system fragility analysis is more precise than the first-order bound method; (3) the proposed fragility curves in this study provide quantitative damage probabilities for the individual components and system under different seismic intensity levels. (4) The IM values corresponding to 50% exceedance failure probability of the whole system is 1%-3% lager than that of the upper bounds, and it is 3% to 5% less than that of the lower bounds. The conservative upper bound is a more suitable approximation for system fragility. (5) It should be noted that the obtained fragility curves are valid for the considered tunnel-pipeline structure and site conditions. For different tunnel structures and site conditions, the fragility curves can be constructed following the same steps outlined in this study.

期刊论文 2025-04-01 DOI: 10.1016/j.tust.2025.106441 ISSN: 0886-7798

Ensuring the structural resilience of shield tunnels is critical in seismically active regions. Liquefaction induced by seismic activity poses an additional hazard to tunnel safety. The study performed seismic fragility analysis using the incremental dynamic analysis method which utilized a finite element model of a saturated porous seabed shield tunnel. The findings highlighted that different liquefaction mechanisms are observed in different types of the soil surrounding the tunnel. The thickness of the fine sand layer (FSL) surrounding the tunnel significantly affects seabed liquefaction depth and the tunnel's maximum bending moment (Mmax). The highest Mmax and damage probabilities were observed when the tunnel was entirely embedded in the FSL, whereas the smallest Mmax and lowest damage probabilities occurred when the tunnel was partially within the sand and clay. This study could also provide some insights on seismic mitigation strategies in subsea shield tunnels and the soil type influences the timing of Mmax occurrence and emphasized the critical role of seismic frequency in determining the tunnel's response.

期刊论文 2025-04-01 DOI: 10.1016/j.soildyn.2025.109246 ISSN: 0267-7261

The assessment of fragility of underground civil defense structures is of paramount importance in ensuring their functionality and enhancing safety in seismic-prone regions. This study aims to explore the evolution law of seismic fragility for a shallowly buried large- underground civil defense structure in soft soils, employing advanced data-based approaches. To achieve this, a two-dimensional (2D) nonlinear finite element model of the soil-civil defense structure interaction system was established, integrating data-based parameters and insights. Subsequently, the cloud and incremental dynamical analysis (IDA) methods were employed to develop a probabilistic seismic demand model for the shallowly buried large- civil defense structure, effectively utilizing data-based approaches to account for the nonlinear characteristics of the soil and the uncertainties of input seismic motions. Based on this model, seismic fragility curves were generated using different seismic intensity measures (IMs), and the evaluation of IMs was carried out by the efficiency and practicality analyses of IMs. These curves were then systematically compared with other existing empirical and analytical fragility curves. The developed fragility curves were subsequently applied to assess seismic risk and resilience for a typical underground civil defense structure in soft soils, offering valuable data-driven insights into the structure's performance under various scenarios. The results indicated that the seismic fragility of the civil defense structure increases with the softening of the soil. Moreover, this study highlighted the substantial influence of structural typologies and local soil conditions on the fragility of civil defense structures, particularly the seismic fragility of underground structures characterized by shallowly buried and large-section, and demonstrating the utility of data-based approaches in comprehending complex interactions. The efficiency and practicality analyses highlighted that ground surface IMs outperform bedrock IMs and acceleration-type IMs over velocity-type IMs. The proposed seismic fragility curves indicated that the exceedance probability for each damage state gradually approaches 100% with the increase of seismic intensity. Finally, a case study was presented on the use of seismic fragility curves to assessment of seismic risk and seismic resilience of civil defense structure. The outcomes of this research, enriched by data-based approaches, can serve as invaluable references for seismic performance assessment, risk analysis, and resilience evaluation of typical civil defense structures in similar soft soil sites.

期刊论文 2024-04-01 DOI: 10.1016/j.tust.2024.105640 ISSN: 0886-7798

The corrosion-protection liner (CPL) technology consists of installing flexible plastic liners with anchoring studs inside existing pipelines and subsequently filling cement mortar to the gap between the waterproof liner and the pipeline. With the excellent chemical resistance, impermeability and fast construction speed, CPL provides an economical and environmentally friendly alternative for pipeline rehabilitation without large-scale excavation. However, the seismic performance of water supply pipelines after being retrofitted with CPL has not been well studied yet. In this study, a series of full-scale quasi-static experiments were firstly conducted on ductile-iron push-on joints before and after reinforcement with CPL to investigate the nonlinear behavior of the joints under longitudinal load and transverse bending. Simplified numerical models of straight pipelines with joints before and after retrofitting in the non-uniform site were then developed in the OpenSees platform, and incremental dynamic analysis (IDA) were performed with consideration of nonlinear soil-pipeline interaction. Twenty-eight pairs of ground motions with the peak ground velocities (PGV) collectively scaled from 200 mm/s to 3000 mm/s were used as inputs. Seismic fragility curves of the pipelines before and after retrofitting were developed with respect to the optimum intensity measure, PGV. It can be seen from the experimental results that the longitudinal load and bending moment capacity of the push-on joint increased about 400% and 20% after CPL reinforcement, respectively, and the joint opening and rotation decreased about 20% and 18% after retrofitting. Numerical results show that the CPL reinforced pipelines exhibit better seismic performance and CPL effectively reduces the failure probability of segmented pipelines under earthquake ground excitations.

期刊论文 2024-01-01 DOI: 10.1016/j.soildyn.2023.108333 ISSN: 0267-7261
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-7条  共7条,1页