共检索到 2

Seismic safety of high concrete face rockfill dams (CFRD) on thick layered deposit is crucial. This study develops a seismic performance assessment procedure for high CFRD on thick layered deposit considering multiple engineering demand parameters (EDPs), and evaluates the effectiveness of gravel column and berm reinforcement for a typical CFRD. Solid-fluid coupled seismic response analysis of high CFRD on thick layered deposit is conducted using an advanced elasto-plastic constitutive model for soil, revealing the unique seismic response of the system, including the buildup of excess pore pressure within the thick deposit. Based on the high-fidelity simulations, appropriate intensity measure (IM) and EDPs are identified, and corresponding damage states (DS) are determined. Fragility curves are then developed using multiple stripe analysis, so that the probability of damage under different input motion intensities can be quantified for different DS. Using the proposed procedure, the reinforcement effects of berms and gravel columns are evaluated. Results show that berms can contribute significantly to reducing the probability of damage for the system, while the effect of gravel columns is unsatisfactory due to the limited achievable installation depth compared to the thickness of the deposit and low replacement ratio.

期刊论文 2025-10-01 DOI: 10.1016/j.soildyn.2025.109550 ISSN: 0267-7261

Unpreventable constructional defects are the main issues in the case of steel Moment-Resisting Frames (MRFs) that mostly occur in the rigidities of beam-to-column connections. The present article aims to investigate the effects of different rigidities of structures and to propose Infill Masonry Walls (IMWs) as retrofitting strategy for the steel damaged buildings. A fault or failure to meet a certain consideration of the soil type beneath the building and the current rigidity of connections can cause mistake in determining the performance of building. Therefore, this study comprehensively explores different conditions of soil types, connection rigidities, and implementing IMWs on the 3-, 5-, 7-, and 9-story MRFs. Two nonlinear analyses, namely Nonlinear Dynamic Analysis (NDA) and Incremental Dynamic Analysis (IDA) were performed on 384 steel MRFs having different conditions of defects and the results of the analysis include 3456 performance curves assuming three ground motion subsets recommended by FEMA P695. The results confirm that the proposed retrofitting procedure can effectively improve the performance levels of MRFs, which the connections rigidity of 90 %, 80 %, 70 %, 60 %, and 50 % can reduce the collapse performance level by 2.86 %, 5.35 %, 9.31 %, 16.56 %, and 34.65 %, respectively.

期刊论文 2024-02-01 DOI: 10.1016/j.soildyn.2023.108396 ISSN: 0267-7261
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页