共检索到 17

This study investigates the influence of wood pellet fly ash blended binder (WABB) on the mechanical properties of typical weathered granite soils (WS) under a field and laboratory tests. WABB, composed of 50 % wood pellet fly ash (WA), 30 % ground granulated blast furnace slag (GGBS), and 20% cement by dry mass, was applied at dosages of 200-400 kg/m3 to four soil columns were constructed at a field site deposited with WS. After 28 days, field tests, including coring, standard penetration tests (SPT), and permeability tests, revealed enhanced soil cementation and reduced permeability, indicating a denser soil matrix. Unconfined compressive tests (UCT) and free-free resonant column (FFRC) tests on field cores at 28 and 56 days, compared with laboratory specimens and previously published data, demonstrated strength gains 1.2-2.1 times higher due to field-induced stress. The presence of clay minerals influenced the WABB's interaction and microstructure development. Correlations between seismic waves, small-strain moduli, and strength were developed to monitor in-situ static and dynamic stiffness gain of WABB-stabilized weathered granite soils.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04378 ISSN: 2214-5095

Despite the complexity of real earthquake motions, the incident wavefield excitation for soil-structure interaction (SSI) analysis is conventionally derived from one-dimensional site response analysis (1D SRA), resulting in idealized, decoupled vertically incident shear and compressional waves for the horizontal and vertical components of the wavefield, respectively. Recent studies have revealed potentially significant deviation of the 1D free-field predictions from the actual three-dimensional (3D) site response and obtained physical insights into the mechanistic deficiencies of this simplified approach. Particularly, when applied to vertical motion estimation, 1D SRA can lead to consistent overprediction due to the refraction of inclined S waves in the actual wavefield that is not correctly accounted for in the idealized vertical P wave propagation model. However, in addition to the free-field site response, seismic demands on structures and non-structural components are also influenced by the dynamic characteristics of the structure and SSI effects. The extent to which the utilization of vertically propagating waves influences the structural system response is currently not well understood. With the recent realization of high-performance broadband physics-based 3D ground motion simulations, this study evaluates the impact of incident wavefield modeling on SSI analysis of representative building structures based on two essential ingredients: (1) realistic spatially dense simulated ground motions in shallow sedimentary basins as the reference incident motions for the local SSI model and (2) high-fidelity direct modeling of the soil-structure system that fully honors the complexity of the incident seismic waves. Numerical models for a suite of archetypal two-dimensional (2D) multi-story building frames were developed to study their seismic response under the following incident wavefield modeling conditions: (1) SSI models with reference incident waves from the 3D earthquake simulation, (2) SSI models with idealized vertically incident waves based on 1D SRA, and (3) conventional fixed-base models with base translational motions from 1D SRA. The impact of these modeling choices on various structural and non-structural demands is investigated and contrasted. The results show that, for the horizontal direction, the free-field linear and nonlinear site amplification and subsequent dynamic filtering of the base motions within the structure can be reasonably captured by the assumed vertically propagating shear waves. This leads to generally fair agreements for structural demands controlled by horizontal motions, including peak inter-story drifts and yielding of structural components. In contrast, vertical seismic demands on structures are overpredicted in most cases when using the 1D wavefields and can result in exacerbated structural damage. Special attention should be given to the potentially severe vertical floor accelerations predicted by the 1D approach due to the combined effects of fictitious free-field site amplification and significant vertical dynamic amplification along the building height. This can pose unrealistic challenges to seismic certification of acceleration-sensitive secondary equipment necessary for structural and operational functionality and containment barrier design of critical infrastructures. It is also demonstrated that vertical SSI effects can be more significant than those in the horizontal direction due to the large vertical structural stiffness and should be considered in vertical floor acceleration assessments, especially for massive high-rise buildings.

期刊论文 2025-07-01 DOI: 10.1002/eqe.4350 ISSN: 0098-8847

Seismoacoustic wave generation for two consecutive surface chemical explosions of the same yield (approximately 1 ton TNT-equivalent) was studied during the Large Surface Explosion Coupling Experiment (LSECE) conducted at Yucca Flat on the Nevada National Security Site (NNSS) site in alluvium geology. We have performed numerical simulations for both chemical explosions to investigate how the non-central source initiation, site topography and soil mechanical properties affect the evolution of the explosion (fireball and cloud), its crater, and variations in the generated blast waves. The results can be used to improve the understanding of surface explosions and their effects and how those effects can be used to infer source information such as explosive yield and emplacement. We find that the non-central detonation of the explosive cube results in non-axisymmetric blast overpressures which persist through the strong and weak shock regimes, in this case out to 200 m and more. The pattern of the secondary shock (i.e., shock created due to slowing explosive products within the expanding fireball) is also affected and its arrival relative to the main shock and may be indicative of explosive type due to its dependence on the explosive products ratio of heats. Small reflections are visible within the overpressure signal that are most probably due to small artifacts in blast path. Importantly, the fireball growth, cavity generation, and cloud formation also depart from spherical and ideal approximations due to ground interactions and material dependence, which shows the importance of realistic geomaterial models for accurate prediction. The asymmetry in peak overpressure is diminished for the second chemical explosion, which was placed in the crater of the first. Numerical modeling shows that the explosive jetting created by the non-central detonation is reduced upon interaction with the crater walls and this has the effect of making the blast generation more axisymmetric.

期刊论文 2025-06-01 DOI: 10.1177/20414196241251482 ISSN: 2041-4196

This study investigates the liquefaction characteristics of deep soil layers and their subsequent effects on the seismic response of subway station structures, utilizing shaking table tests and inputting seismic waves of varying principal frequencies. Macroscopically, the liquefaction of deep soil strata does not result in surface manifestations such as water spraying and sand bubbling. However, it still induces cracking and damage to the soil surrounding the structure. Analyzing from the perspective of the pore pressure ratio reveals that the ratio under free-field conditions is significantly lower than under structural conditions. Additionally, the pore pressure ratio caused by the Beijing Hotel wave is greater, followed by the Beijing artificial wave, while the Ming Shan wave results in the smallest ratio. In terms of the station structure, the structural acceleration and tensile strain increment induced by the Beijing Hotel wave are the most significant, followed by the Beijing artificial wave, with the least effect from the Ming Shan wave. This indicates that the liquefaction behavior of deep soil layers is primarily influenced by the overlying load and the frequency characteristics of seismic waves. The construction of subway stations reduces the overlying loads on soil layers, increasing the likelihood of soil layer liquefaction. Meanwhile, a lower main frequency of the seismic wave results in a higher degree of liquefaction in the deep soil layers. The seismic response of the station structure is contingent on the frequency characteristics of the seismic wave. The lower the primary frequency of the seismic wave, the higher the seismic response of the station structure. Furthermore, the liquefaction behavior of the deep soil layers also impacts the seismic response of the station structure, particularly the tensile strain response of the top and bottom slabs of the station structure.

期刊论文 2025-05-01 DOI: 10.1016/j.soildyn.2025.109294 ISSN: 0267-7261

Resonance can significantly amplify a structure's response to seismic loads, leading to extended damage, especially in critical infrastructure like nuclear power plants. Thus, this study focuses on the resonance effects of the dynamic interaction between layered soil, pile foundations, and nuclear island structures, which is particularly important given the limited availability of bedrock sites for such facilities. Specifically, this study explores the resonance behavior of nuclear islands under various seismic conditions through large-scale shaking table tests by developing a dynamic interaction model for layered soil-pile-nuclear island systems. The proposed model comprises a 3 x 3 pile group supporting the upper structure of a nuclear island embedded within a three-layer soil profile. Sinusoidal waves of varying frequencies identify the factors influencing the system's resonance response. Besides, the resonance effects are validated by inputting seismic motions based on compressed acceleration time histories. Furthermore, the impact of non-primary frequency components on structural resonance is assessed by comparing sinusoidal wave components. The findings reveal that resonance effects increase as the amplitude of the input seismic motion increases to a certain threshold, after which the effect stabilizes. This trend is particularly pronounced in the bending moment response at the pile head. Additionally, an independent resonance phenomenon is observed in the superstructure, suggesting that its resonance effects should be considered separately in nuclear island design. Similar resonance effects are observed when the predominant frequency of sinusoidal waves closely matches the compressed seismic motions, suggesting that sinusoidal inputs effectively simulate structural resonance during seismic design testing.

期刊论文 2025-04-01 DOI: 10.1016/j.soildyn.2025.109256 ISSN: 0267-7261

Nuclear facility sites built on soft deposits often adopt a combined piled cushion raft foundation (CPCRF) to enhance bearing capacity. However, separation and slip at the raft-bottom interface is inevitable in refined seismic simulations of weakly anchored nuclear island buildings (NIBs). Multiple factors related to both the structure and foundation influence the interface behavior. To address this, a structure-interface-soil nonlinear interaction model was developed, incorporating interfacial discontinuity characteristics, tri-directional wave inputs, and a stable semi-unbounded condition. The validity of the wave-field simulation method and the interface model were confirmed through theoretical comparisons. Using the AP1000 NIB at a specific CPCRF site as an example, the practicability of the model was validated, and key behavioral patterns were identified. In the static-seismic process, correlations between interface behavior, pile damage, and structural vibration were quantitatively elucidated. When seismic intensity exceeded design limits, the minimum instantaneous grounding ratio decreased rapidly. Structural vertical acceleration nearly doubled, and the frequency band of peak horizontal vibration shifted to higher frequencies. Interface behavior strongly correlated with slip stability and pile body damage. These findings indicate that interfacial discontinuities at the raft's bottom pose safety risks warranting further investigation.

期刊论文 2025-04-01 DOI: 10.1016/j.soildyn.2025.109221 ISSN: 0267-7261

This paper aims to investigate the wave-induced evolution of small-strain stiffness and its effects on seismic wave propagation. To this end, an advanced numerical framework based on the dynamic porous media theory was developed, in which the Iwan multi-surface constitutive model was adopted to model the soil behavior during cyclic loading. Moreover, the numerical framework integrates key parameters such as ocean wave characteristics and depth-dependence seabed conditions to model the intricate interactions between waves and the seabed. Following model verification via analytical solutions and previous experimental data, comprehensive parameter studies are conducted, from which the effects of different wave conditions and seabed properties on the dynamic response of the seabed were obtained, revealing the wave-induced small- strain stiffness spatial and temporal variation. Subsequently, simulations of geophysical monitoring instants are conducted, assessing the impact of evolving small-strain stiffness on seismic wave propagation. The findings highlight the implications of stiffness changes on seismic wave propagation characteristics. The study provides valuable insights into the challenges and opportunities associated with interpreting geophysical data in dynamic submarine environments, offering implications for subsurface characterization and monitoring applications.

期刊论文 2025-03-01 DOI: 10.1016/j.oceaneng.2024.120188 ISSN: 0029-8018

The damage effects of the earthquake on tunnels crossing faults are categorized into two types: inertial forces generated by ground motions and permanent stratigraphic deformations caused by fault dislocations. A seismic dynamic analysis method of tunnel considering coseismic dislocation is proposed by introducing the numerical simulation of seismic wave propagation into the soil-structure dynamic analysis research field. First, seismic waves are simulated according to the finite-difference method. The stress, displacement, and velocity of nodes on the truncated boundary of the soil-structure model can be calculated according to the seismic wave propagation simulation method. Then, the seismic waves and dynamic dislocation load are simulated in the finite element model by the viscous-spring boundary. Based on the free-field model, the reliability of the presented method is validated in simulating coseismic deformation and seismic waves. In the case of the 2022 MS 6.9 Menyuan earthquake and the Daliang tunnel, which was severely damaged by this earthquake, the deformation of the tunnel simulated based on the presented method is consistent with the previous method. The proposed method can offer guidance for the seismic fortification of tunnel engineering.

期刊论文 2025-02-25 DOI: 10.1007/s00603-025-04458-z ISSN: 0723-2632

This study introduces a simplified analytical method to extract shear wave velocity profiles from seismic waves evoked by explosives, providing a time-efficient solution to the conventional Multichannel Analysis of Surface Waves (MASW) method. Controlled ammonium nitrate emulsion explosions were used at five research sites throughout Thailand with different geological conditions to capture ground motion data through a 16-geophone array during field investigations. This direct analysis evaluates surface wave arrival times in real-time while implementing elastic theory-derived empirical factors for analysis. The proposed method delivers results that match MASW-derived profiles yet require fewer complex procedures and shows Vs30 variations from 4.43 to 38.33%. The simplified method delivered the most accurate results in areas displaying gradual soil property transitions and showed reduced precision when dealing with abrupt soil type or mechanical property shifts. The new method transforms petroleum exploration seismic data into geotechnical applications by delivering dependable shear wave velocity profiles with lower complexity and using fewer resources. It is specifically valuable for limited-budget engineering projects or difficult-to-access locations.

期刊论文 2025-01-01 DOI: 10.4186/ej.2025.29.5.61 ISSN: 0125-8281

Monitoring groundwater levels and soil moisture content (SMC) is crucial for managing water resources and assessing risks, but can be challenging, especially over large acreages. Recent advances in geophysical methods provide new opportunities for accurate groundwater assessment. Seismic wave speed data, sensitive to changes in pore water pressure, can be used in a passive monitoring approach, while electrical conductivity data can be used for monitoring SMC. Combining seismic and electromagnetic induction (EMI)-based monitoring techniques enhances our understanding of groundwater dynamics. Seismic methods enable wide spatial coverage with moderate depth resolution, whereas EMI offers high-resolution, rapid data acquisition, particularly effective for shallow subsurface monitoring. Integrating these approaches can leverage the strengths of each, yielding comprehensive, high-resolution insights into dynamic subsurface hydrological processes. Integrating these approaches allows for improved groundwater monitoring, aiding in better understanding and managing droughts in regions like the Netherlands.

期刊论文 2024-12-05 DOI: 10.1017/njg.2024.23 ISSN: 0016-7746
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共17条,2页