在列表中检索

共检索到 2

A Tethered balloon-based field campaign was launched for the vertical observation of air pollutants within the lower troposphere of 1000 m for the first time over a Chinese megacity, Shanghai in December of 2013. A custom-designed instrumentation platform for tethered balloon observation and ground-based observation synchronously operated for the measurement of same meteorological parameters and typical air pollutants. One episodic event (December 13) was selected with specific focus on particulate black carbon, a short-lived climate forcer with strong warming effect. Diurnal variation of the mixing layer height showed very shallow boundary of less than 300 m in early morning and night due to nocturnal inversion while extended boundary of more than 1000 m from noon to afternoon. Wind profiles showed relatively stagnant synoptic condition in the morning, frequent shifts between upward and downward motion at noon and in the afternoon, and dominant downward motion with sea breeze in the evening. Characteristics of black carbon vertical profiles during four different periods of a day were analyzed and compared. In the morning, surface BC concentration averaged as high as 20 mu g/m(3) due to intense traffic emissions from the morning rush hours and unfavorable meteorological conditions. A strong gradient of BC concentrations with altitude was observed from the ground to the top of boundary layer at around 250-370 m. BC gradients turned much smaller above the boundary layer. BC profiles measured during noon and afternoon were the least dependent on heights. The largely extended boundary layer with strong vertical convection was responsible for a well mixing of BC particles in the whole measured column. BC profiles were similar between the early-evening and late-evening phases. The lower troposphere was divided into two stratified air layers with contrasted BC vertical distributions. Profiles at night showed strong gradients from the relatively high surface concentrations to low concentrations near the top of the boundary layer around 200 m. Above the boundary layer, BC increased with altitudes and reached a maximum at the top of 1000 m. Prevailing sea breeze within the boundary layer was mainly responsible for the quick cleanup of BC in the lower altitudes. In contrast, continental outflow via regional transport was the major cause of the enhanced BC aloft. This study provides a first insight of the black carbon vertical profiles over Eastern China, which will have significant implications for narrowing the gaps between the source emissions and observations as well as improving estimations of BC radiative forcing and regional climate. (C) 2015 Elsevier Ltd. All rights reserved.

期刊论文 2015-12-01 DOI: 10.1016/j.atmosenv.2015.08.096 ISSN: 1352-2310

Knowledge of the distribution and sources of black carbon (BC) is essential to understanding its impact on radiative forcing and the establishment of a control strategy. In this study, we analyze atmospheric BC and its relationships with fine particles (PM2.5) and trace gases (CO, NOy and SO2) measured in the summer of 2005 in two areas frequently influenced by plumes from Beijing and Shanghai, the two largest cities in China. The results revealed different BC source characteristics for the two megacities. The average concentration of BC was 2.37 (+/- 1.79) and 5.47 (+/- 4.00) mu g m(-3), accounting for 3.1% and 7.8% of the PM2.5 mass, in Beijing and Shanghai, respectively. The good correlation between BC, CO and NOy (R-2 = 0.54-0.77) and the poor correlation between BC and SO2 suggest that diesel vehicles and marine vessels are the dominant sources of BC in the two urban areas during summer. The BC/CO mass ratio in the air mass from Shanghai was found to be much higher than that in the air mass from Beijing (0.0101 versus 0.0037 Delta gBC/Delta gCO), which is attributable to a larger contribution from diesel burning (diesel-powered vehicles and marine vessels) in Shanghai. Based on the measured ratios of BC/CO and annual emissions of CO, we estimate that the annual emissions of BC in Beijing and Shanghai are 9.51 Gg and 18.72 Gg, respectively. The improved emission rates of BC will help reduce the uncertainty in the assessment of the impact of megacities on regional climate. (C) 2009 Elsevier Ltd. All rights reserved.

期刊论文 2009-08-01 DOI: 10.1016/j.atmosenv.2009.04.062 ISSN: 1352-2310
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页