共检索到 7

The pipe jacking method has been increasingly applied to a variety of tunnel projects. Investigating the ground disturbance characteristics during pipe jacking is of great significance to ensure accurate safety assessment and timely ground deformation control. This paper developed a three-dimensional model to simulate the entire pipe jacking process of a shallow-buried cross passage tunnel in soft strata. A key contribution of this research is the development of an element shear failure approach, combining element failure method with shear failure modeling. Meanwhile, the dynamic cutter excavation effect and the soil shear failure were considered in the numerical modeling. Through the comparison with the field monitoring results and traditional numerical simulation approach, the effectiveness, reliability, and superiority of the proposed approach were well demonstrated. Moreover, based on the numerical results, the ground deformation characteristics along with the stress-strain state of the cutter head during the soil excavating process were thoroughly analyzed. The proposed approach and its application in the ground disturbance analysis will offer useful references and guidance for numerical studies in similar pipe jacking projects in near future.

期刊论文 2025-04-17 DOI: 10.3311/PPci.39737 ISSN: 0553-6626

This paper investigates the mechanisms of rock failure related to axial splitting and shear failure due to hoop stresses in cylindrical specimens. The hoop stresses are caused by normal viscous stress. The rheological dynamics theory (RDT) is used, with the mechanical parameters being determined by P- and S-wave velocities. The angle of internal friction is determined by the ratio of Young's modulus and the dynamic modulus, while dynamic viscosity defines cohesion and normal viscous stress. The effect of frequency on cohesion is considered. The initial stress state is defined by the minimum cohesion at the elastic limit when axial splitting can occur. However, as radial cracks grow, the stress state becomes oblique and moves towards the shear plane. The maximum and nonlinear cohesions are defined by the rock parameters under compressive strength when the radial crack depth reaches a critical value. The efficacy and precision of RDT are validated through the presentation of ultrasonic measurements on sandstone and rock specimens sourced from the literature. The results presented in dimensionless diagrams can be utilized in microcrack zones in the absence of lateral pressure in rock masses that have undergone disintegration due to excavation. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2025-04-01 DOI: 10.1016/j.jrmge.2024.04.036 ISSN: 1674-7755

Localized rock failures, like cracks or shear bands, demand specific attention in modeling for solids and structures. This is due to the uncertainty of conventional continuum-based mechanical models when localized inelastic deformation has emerged. In such scenarios, as macroscopic inelastic reactions are primarily influenced by deformation and microstructural alterations within the localized area, internal variables that signify these microstructural changes should be established within this zone. Thus, localized deformation characteristics of rocks are studied here by the preset angle shear experiment. A method based on shear displacement and shear stress differences is proposed to identify the compaction, yielding, and residual points for enhancing the model's effectiveness and minimizing subjective influences. Next, a mechanical model for the localized shear band is depicted as an elasto-plastic model outlining the stress-displacement relation across both sides of the shear band. Incorporating damage theory and an elasto-plastic model, a proposed damage model is introduced to replicate shear stressdisplacement responses and localized damage evolution in intact rocks experiencing shear failure. Subsequently, a novel nonlinear mathematical model based on modified logistic growth theory is proposed for depicting the shear band's damage evolution pattern. Thereafter, an innovative damage model is proposed to effectively encompass diverse rock material behaviors, including elasticity, plasticity, and softening behaviors. Ultimately, the effects of the preset angles, temperature, normal stresses and the residual shear strength are carefully discussed. This discovery enhances rock research in the proposed damage model, particularly regarding shear failure mode. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

期刊论文 2025-03-01 DOI: 10.1016/j.jrmge.2024.08.020 ISSN: 1674-7755

With the acceleration of urbanization, the stability of the foundation is being more crucial to the performance and service of the superstructure. As our understanding of the factors influencing soil's physical and mechanical behavior deepens, it becomes increasingly challenging for traditional limit equilibrium and limit analysis methods to accurately consider the complex factors affecting foundation stability, such as initial fabric anisotropy caused by the particle morphology and geological deposition in sand. Although some scholars had used advanced constitutive models in the finite element method (FEM) to investigate the influence of initial fabric anisotropy on mechanical responses of foundations, this approach failed to reveal the microscopic information underlying the shear failure of sandy soil foundations. In this study, the influence of the initial fabric anisotropy of sandy soil on the ultimate bearing capacity and shear failure mode of shallow foundation is studied using the hierarchical FEM and discrete element method (DEM) coupling analysis method. Four representative volume elements (RVEs) with varying initial bedding plane angles are constructed in DEM for characterizing different initial fabric anisotropies, and the specific stress-strain information of DEM RVEs is directly passed into the corresponding Gauss points in FEM to replace the conventional constitutive model. Numerical results show that the initial fabric anisotropy affects the ultimate bearing capacity and shear failure mode of shallow foundations significantly, and the corresponding micromechanical behaviors at different local Gauss points have been explored, which advances our understanding of the micromechanisms underlying the progressive shear failure of sandy soil foundations significantly.

期刊论文 2025-02-01 DOI: 10.1002/nag.3907 ISSN: 0363-9061

Coarse particle shape in slip zone soil influences the mesoscopic structure of the soil, which in turn affects soil shear strength and failure behavior. In order to investigate the effect of particle shape on the shear characteristics of coarse-fine-grained mixed slip zone soil, three types of coarse particles (spheroidal, rounded, and angular) were selected for mixing and matching, and a total of 10 sets of medium-scale shear tests were designed for this paper. To quantify the shear deformation and failure process of slip zone soils, particle image velocimetry (PIV) technology and the hanging hammer method were used to obtain mesoscopic data of the soil (displacement vector data of soil particles and elevation data of the shear failure surface), which were used to calculate shear band thickness, shear dilatation, and roughness coefficient of the shear failure surface. The results indicate that coarse particle shape can considerably affect the macroscopic mechanical properties (internal friction angle and shear strength) and mesoscopic deformation characteristics (shear band thickness, shear dilatation, and shear surface morphology) of soils. Angular coarse particles have higher interlocking strength than spheroidal and rounded coarse particles, allowing angular coarse-grained slip zone soils to develop large shear band thickness and rough shear failure surfaces. In addition, mesoscopic damage analysis suggests that the damage rate of slip zone soils decreases with increasing coarse particle shape complexity. These findings enhance comprehension of the failure characteristics of soil-rock mixture slopes and serve as a good reference for the stability analysis of similar slopes.

期刊论文 2024-08-01 DOI: 10.1016/j.engfailanal.2024.108345 ISSN: 1350-6307

The assumption of seepage parallel to an infinite slope is realistic and indeed typical of most hillslope failures, to which one-dimensional infinite slope analysis may be applied. In this study, however, the general case of an ideal infinite slope of homogeneous isotropic saturated granular soil affected by uniform steady seepage with a vertical upward component was considered. Stability analysis was carried out in view of i) Mohr-Coulomb shear failure, the main result being the preparation of a stability chart for an infinite slope acted upon throughout by seepage in an arbitrary direction; ii) hydraulic instability in the guise of hydraulic heave failure. This occurs when the seepage gradient, at which the upward seepage forces transmitted to the soil exceed the gravitational forces, is the critical hydraulic gradient , for which a simple, albeit general, equation was derived. Subsequent comparison of these two types of failure showed that Mohr-Coulomb failure precedes hydraulic heave failure, except in one particular case, i.e. horizontal ground and vertical upward flow, where the failures are simultaneous. The study also considered iii) the phenomenon of static liquefaction resulting from undrained monotonic shear of saturated contractive loose soils, which generates a build-up of excess pore-water pressure triangle u. This leads to a sudden substantial or total loss of shear strength, i.e. the phenomenon of static liquefaction which, in turn, can produce catastrophic failures,even in gentle slopes. Lastly, in relation to the above mentioned excess pore-water pressure , an equation that enables us to estimate its value was easily obtained.

期刊论文 2024-07-01 DOI: 10.19199/2024.3.0557-1405.059 ISSN: 0557-1405

The shear behavior of backfill-rock composites is crucial for mine safety and the management of surface subsidence. For exposing the shear failure mechanism of backfill-rock composites, we conducted shear tests on backfill-rock composites under three constant normal loads, compared with the unfilled rock. To investigate the macro- and meso-failure characteristics of the samples in the shear tests, the cracking behavior of samples was recorded by a high-speed camera and acoustic emission monitoring. In parallel with the experimental test, the numerical models of backfill-rock composites and unfilled rock were established using the discrete element method to analyze the continuous-discontinuous shearing process. Based on the damage mechanics and statistics, a novel shear constitutive model was proposed to describe mechanical behavior. The results show that backfill-rock composites had a special bimodal phenomenon of shearing load-deformation curve, i.e. the first shearing peak corresponded to rock break and the second shearing peak induced by the broken of aeolian sand-cement/fly ash paste backfill. Moreover, the shearing characteristic curves of the backfill-rock composites could be roughly divided into four stages, i.e. the shear failure of the specimens experienced: stage I: stress concentration; stage II: crack propagation; stage III: crack coalescence; stage IV: shearing friction. The numerical simulation shows that the existence of aeolian sand-cement/fly ash paste backfill inevitably altered the coalescence type and failure mode of the specimens and had a strengthening effect on the shear strength of backfillrock composites. Based on damage mechanics and statistics, a shear constitutive model was proposed to describe the shear fracture characteristics of specimens, especially the bimodal phenomenon. Finally, the micro- and meso-mechanisms of shear failure were discussed by combining the micro-test and numerical results. The research can advance the better understanding of the shear behavior of backfill-rock composites and contribute to the safety of mining engineering. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

期刊论文 2024-03-01 DOI: 10.1016/j.jrmge.2023.08.012 ISSN: 1674-7755
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-7条  共7条,1页