共检索到 2

Soot deposition from wildfires decreases snow and ice albedo and increases the absorption of shortwave radiation, which advances and accelerates melt. Soot deposition also induces algal growth, which further decreases snow and ice albedo. In recent years, increasingly severe and widespread wildfire activity has occurred in western Canada in association with climate change. In the summers of 2017 and 2018, westerly winds transported smoke from extensive record-breaking wildfires in British Columbia eastward to the Canadian Rockies, where substantial amounts of soot were deposited on high mountain glaciers, snowfields, and icefields. Several studies have addressed the problem of soot deposition on snow and ice, but the spatiotemporal resolution applied has not been compatible with studying mountain icefields that are extensive but contain substantial internal variability and have dynamical albedos. This study evaluates spatial patterns in the albedo decrease and net shortwave radiation (K*) increase caused by soot from intense wildfires in Western Canada deposited on the Columbia Icefield (151 km(2)), Canadian Rockies, during 2017 and 2018. Twelve Sentinel-2 images were used to generate high spatial resolution albedo retrievals during four summers (2017 to 2020) using a MODIS bidirectional reflectance distribution function (BRDF) model, which was employed to model the snow and ice reflectance anisotropy. Remote sensing estimates were evaluated using site-measured albedo on the icefield's Athabasca Glacier tongue, resulting in a R-2, mean bias, and root mean square error (RMSE) of 0.68, 0.019, and 0.026, respectively. The biggest inter-annual spatially averaged soot-induced albedo declines were of 0.148 and 0.050 (2018 to 2020) for southeast-facing glaciers and the snow plateau, respectively. The highest inter-annual spatially-averaged soot-induced shortwave radiative forcing was 203 W/m(2) for southeast-facing glaciers (2018 to 2020) and 106 W/m(2) for the snow plateau (2017 to 2020). These findings indicate that snow albedo responded rapidly to and recovered rapidly from soot deposition. However, ice albedo remained low the year after fire, and this was likely related to a bio-albedo feedback involving microorganisms. Snow and ice K* were highest during low albedo years, especially for south-facing glaciers. These large-scale effects accelerated melt of the Columbia Icefield. The findings highlight the importance of using large-area high spatial resolution albedo estimates to analyze the effect of wildfire soot deposition on snow and ice albedo and K* on icefields, which is not possible using other approaches.

期刊论文 2022-09-01 DOI: 10.1016/j.rse.2022.113101 ISSN: 0034-4257

The influence of Arctic vegetation on albedo, latent and sensible heat fluxes, and active layer thickness is a crucial link between boundary layer climate and permafrost in the context of climate change. Shrubs have been observed to lower the albedo as compared to lichen or graminoid-tundra. Despite its importance, the quantification of the effect of shrubification on summer albedo has not been addressed in much detail. We manipulated shrub density and height in an Arctic dwarf birch (Betula nana) shrub canopy to test the effect on shortwave radiative fluxes and on the normalized difference vegetation index (NDVI), a proxy for vegetation productivity used in satellite-based studies. Additionally, we parametrised and validated the 3D radiative transfer model DART to simulate the amount of solar radiation reflected and transmitted by an Arctic shrub canopy. We compared results of model runs of different complexities to measured data from North-East Siberia. We achieved comparably good results with simple turbid medium approaches, including both leaf and branch optical property media, and detailed object based model parameterisations. It was important to explicitly parameterise branches as they accounted for up to 71% of the total canopy absorption and thus contributed significantly to soil shading. Increasing leaf biomass resulted in a significant increase of the NDVI, decrease of transmitted photosynthetically active radiation, and repartitioning of the absorption of shortwave radiation by the canopy components. However, experimental and modelling results show that canopy broadband nadir reflectance and albedo are not significantly decreasing with increasing shrub biomass. We conclude that the leaf to branch ratio, canopy background, and vegetation type replaced by shrubs need to be considered when predicting feedbacks of shrubification to summer albedo, permafrost thaw, and climate warming. (C) 2014 Elsevier Inc. All rights reserved.

期刊论文 2014-10-01 DOI: 10.1016/j.rse.2014.07.021 ISSN: 0034-4257
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页