共检索到 2

Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites. The primary aim of this research was to investigate the progression of cumulative failure within a cracked rock formation, considering the combined effects of precipitation and excavation activities. The study was conducted in the Huangniuqian eastern mining area of the Dexing Copper Mine in Jiangxi Province, China. An engineering geological investigation was conducted, a physical model experiment was performed, numerical calculations and theoretical analysis were conducted using the matrix discrete element method (MatDEM), and the deformation characteristics and the effect of the slope angle of a fractured rock mass under different scenarios were examined. The failure and instability mechanisms of the fractured rock mass under three slope angle models were analyzed. The experimental results indicate that as the slope angle increases, the combined effect of rainfall infiltration and excavation unloading is reduced. A novel approach to simulating unsaturated seepage in a rock mass, based on the van Genuchten model (VGM), has been developed. Compared to the vertical displacement observed in a similar physical experiment, the average relative errors associated with the slope angles of 45 degrees, 50 degrees, and 55 degrees were 2.094%, 1.916%, and 2.328%, respectively. Accordingly, the combined effect of rainfall and excavation was determined using the proposed method. Moreover, the accuracy of the numerical simulation was validated. The findings contribute to the seepage field in a meaningful way, offering insight that can inform and enhance existing methods and theories for research on the underlying mechanism of ultra-high and steep rock slope instability, which can inform the development of more effective risk management strategies. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

期刊论文 2024-10-01 DOI: 10.1016/j.jrmge.2024.08.019 ISSN: 1674-7755

Wind-blow sand (WBS) is widely distributed in the Desert Gobi region. This study is aimed at exploring the mechanism of how different thicknesses of the WBS layer influence the slope movement of external dumps in open-pit mines. To achieve this aim, the slope of the external dump in the open-pit mining area of Panel 3 in Daliuta Coal Mine was taken as the research object. First, similar simulation experiments were performed for investigating the failure modes and deformation characteristics of the external dump slopes under three geo-morphological conditions: loess base, 10-m-thick WBS base, and 20-m-thick WBS base, respectively. The following results were obtained from the experiments. For the slope with a loess base, its failure is mainly caused by circular sliding from the dump to the interior of the loess layer. For the slope with a 10-m-thick WBS base, the sliding mode involves circular sliding from the dump area to the interior of the WBS layer, linear sliding along the WBS base, and shearing along the foot of the dump area. For the slope with a 20-m-thick WBS base, the sliding mode is circular sliding from the dump area to the interior of the WBS layer. Besides, the sliding area of the dump slope expands as the WBS layer thickens. Furthermore, the results of similar simulation experiments were verified by the finite difference software FLAC3D based on the strength reduction method, and an equation of relationship between the safety factor of the dump slope with a WBS base and the thickness of the WBS layer was derived.

期刊论文 2024-07-30 DOI: 10.1016/j.heliyon.2024.e34891
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页