共检索到 2

This study focuses on investigating permanent deformations, encompassing normal and shear strains, of calcareous sandy soils subjected to drained cyclic traffic-induced loadings. The investigation utilizes a Simple Shear (SS) apparatus allowing for variations in both normal and shear stress components over each cycle and incorporates Principal Stress Rotation (PSR), a feature not replicable in conventional cyclic uniaxial triaxial tests which is the key aspect of this research. The study also accounts for the harmonically changing the effective horizontal stress resulting from cyclic variations of effective vertical stress, conducted under a horizontally constrained boundary condition with zero lateral strain. A series of drained cyclic simple shear experiments is carried out, implementing a heart-shaped stress path, encompassing up to 1000 cycles. The objective of the study is to analyze permanent normal and shear deformations, along with associated total particle crushing, using both sieving analyses and 2D image processing of particles. The study also evaluates the impact of an initial static shear stress originating from the longitudinal slope of roads. The findings highlight the influences of induced cyclic amplitudes of stress components, principal stress and strain rate rotation, and initial static shear stress on the development of permanent strains. Furthermore, the research characterizes particle crushability in terms of total crushability over such loading, examining its dependency on relative density and variations in both shear and normal stress components.

期刊论文 2024-11-01 DOI: 10.1016/j.trgeo.2024.101428 ISSN: 2214-3912

Direct simple shear test is an effective method to measure strength and deformation properties of soil. However, existing direct simple shear apparatus have some shortcomings. The paper has developed a novel dual stress/strain-controlled direct simple shear apparatus. The novel apparatus has the following advantages: A rectangular specimen is used that effectively avoid common issues associated with conventional cylindrical specimens, such as specimen tilting. The utilization of deformation control rods ensures a uniform shear deformation of the specimen. Vertically integrated force transmission structure is improved that avoids issues arising from changes in pivot points due to lever tilting. Incorporating this novel direct simple shear apparatus, shear strength and shear creep tests of clay were performed. Shear strength parameters and shear creep behaviors are analyzed. The results of these experiments show that the novel apparatus can measure accurately the shear rheological properties of soil. This study provides strong guidance for studying the mechanical properties of soil in engineering practice.

期刊论文 2024-06-25 DOI: 10.12989/gae.2024.37.6.615 ISSN: 2005-307X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页