共检索到 3

Uncertainties in the seasonal changes of greenhouse gases (GHG) fluxes in wetlands limit our accurate understanding of the responses of permafrost ecosystems to future warming and increased nitrogen (N) deposition. Therefore, in an alpine swamp meadow in the hinterland of the Qinghai-Tibet Plateau, a simulated warming with N fertilization experiment was conducted to investigate the key GHG fluxes (ecosystem respiration [Re], CH4 and N2O) in the early (EG), mid (MG) and late (LG) growing seasons. Results showed that warming (6.2 degrees C) increased the average seasonal Re by 30.9% and transformed the alpine swamp meadow from a N2O sink to a source, whereas CH4 flux was not significantly affected. N fertilization (4 g N m(-2) a(-1)) alone had no significant effect on the fluxes of GHGs. The interaction of warming and N fertilization increased CH4 uptake by 69.6% and N2O emissions by 26.2% compared with warming, whereas the Re was not significantly affected. During the EG, although the soil temperature sensitivity of the Re was the highest, the effect of warming on the Re was the weakest. The primary driving factor for Re was soil surface temperature, whereas soil moisture controlled CH4 flux, and the N2O flux was primarily affected by rain events. The results indicated: (i) increasing N deposition has both positive and negative feedbacks on GHG fluxes in response to climate warming; (ii) during soil thawing process at active layer, low temperature of deep frozen soils have a negative contribution to Re in alpine ecosystems; and (iii) although these alpine wetland ecosystems are buffers against increased temperature, their feedbacks on climate change cannot be ignored because of the large soil organic carbon pool and high temperature sensitivity of the Re. (C) 2017 Elsevier B.V. All rights reserved.

期刊论文 2017-12-01 DOI: 10.1016/j.scitotenv.2017.06.028 ISSN: 0048-9697

The limited number of in situ measurements of greenhouse gas (GHG) flux during soil freeze-thaw cycles in permafrost regions limits our ability to accurately predict how the alpine ecosystem carbon sink or source function will vary under future warming and increased nitrogen (N) deposition. An alpine meadow in the permafrost region of the Qinghai-Tibet Plateau was selected, and a simulated warming with N fertilization experiment was carried out to investigate the key GHG fluxes (ecosystem respiration [Re], CH4 and N2O) in the early (EG), mid (MG) and late (LG) growing seasons. The results showed that: (i) warming (4.5 degrees C) increased the average seasonal Re, CH4 uptake and N2O emission by 73.5%, 65.9% and 431.6%, respectively. N fertilization (4 g N m(-2)) alone had no significant effect on GHG flux; the interaction of warming and N fertilization enhanced CH4 uptake by 10.3% and N2O emissions by 27.2% than warming, while there was no significant effect on the Re; (ii) the average seasonal fluxes of Re, CH4 and N2O were MG > LG > EG, and Re and CH4 uptake were most sensitive to the soil freezing process instead of soil thawing process; (iii) surface soil temperature was the main driving factor of the Re and CH4 fluxes, and the N2O flux was mainly affected by daily rainfall; (iv) in the growing season, warming increased greenhouse warming potential (GWP) of the alpine meadow by 74.5%, the N fertilization decreased GWP of the warming plots by 13.9% but it was not statistically significant. These results indicate that (i) relative to future climate warming (or permafrost thawing), there could be a hysteresis of GHG flux in the alpine meadow of permafrost region; (ii) under the scenario of climate warming, increasing N deposition has limited impacts on the feedback of GHG flux of the alpine meadow. (C) 2017 Elsevier Ltd. All rights reserved.

期刊论文 2017-05-01 DOI: 10.1016/j.atmosenv.2017.03.024 ISSN: 1352-2310

The response of stores of carbon in peatland to global warming is a major uncertainty in predicting the future carbon budget. We used a short-term laboratory incubation to simulate effects on the potential CO2 emission of peatland soil in Mohe, China under soil temperature (5, 10 15 and 20 degrees C) and soil moisture (0, 30, 60, 100%WHC and completely water saturated). The rates of peat carbon mineralized decreased greatly in the earlier phase, but became stabile after 20 days and total carbon mineralization ranged 20.04 to 112.92 mg across sites and experiment treatments. Carbon mineralization rates decreased with soil depth, increased with temperature and reached highest rates at 60%WHC at the same temperature for all treatments. The calculated Q(10) values ranged from 1.878 to 2.181, varying with the soil depths and soil moisture. The sensitivity of C-flux to moisture depend on temperature. However the Q(10) was not significantly affected by soil moisture and depth. We developed a two compartment model to predict the measured CO2 emission as a multiplicative function of temperature and moisture and the model predicted C-flux very well (R-2>0.888, P<0.001). Our results indicate that the Mohe peatlands would lead to a positive feedback effect on climate change. It is necessary to include such responses in models science they might represent a potential C emission source to peatland ecosystem.

期刊论文 2009-01-01
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页