We estimate snow albedo feedback effects of anthropogenic increases in global radiative forcing, which includes carbon dioxide, methane, nitrous oxide, CFC11, CFC12, black carbon, anthropogenic sulfur emissions, total solar irradiance, and local sulfur emissions by compiling annual observations (1972-2008) for radiative forcing, temperature, snow cover, sulfur emissions, and various teleconnections for 255 5 degrees x 5 degrees grid cells in the Northern Hemisphere. Panel DOLS estimates of the long-run relations indicate that the effect of radiative forcing on temperature increases with latitude (consistent with polar amplification), eliminating snow cover increases local temperature by about 2.8 degrees C, and a 1 degrees C temperature increase reduces snow cover by about 1%. These values create a snow albedo feedback (SAF) that amplifies the temperature increase of higher forcing by about 3.4% relative to its direct effect while an increase in sulfur emissions increases the temperature reduction by about 0.4% relative to its direct effect. The 3.4% SAF is smaller than values generated by process-based climate models and may be associated with the empirical estimates for snowmelt sensitivity Delta S-c/Delta T-s To narrow estimates for the SAF from climate models, we conclude with suggestions for a new experimental design that controls for the simultaneous relation between temperature and snow cover.
2023-08-01 Web of ScienceThis study employs a fully coupled meteorology-chemistry-snow model to investigate the impacts of light-absorbing particles (LAPs) on snow darkening in the Sierra Nevada. After comprehensive evaluation with spatially and temporally complete satellite retrievals, the model shows that LAPs in snow reduce snow albedo by 0.013 (0-0.045) in the Sierra Nevada during the ablation season (April-July), producing a midday mean radiative forcing of 4.5 W m(-2) which increases to 15-22 W m(-2) in July. LAPs in snow accelerate snow aging processes and reduce snow cover fraction, which doubles the albedo change and radiative forcing caused by LAPs. The impurity-induced snow darkening effects decrease snow water equivalent and snow depth by 20 and 70 mm in June in the Sierra Nevada bighorn sheep habitat. The earlier snowmelt reduces root-zone soil water content by 20%, deteriorating the forage productivity and playing a negative role in the survival of bighorn sheep.
2022-06-16 Web of ScienceUncertainties in the climate response to a doubling of atmospheric CO2 concentrations are quantified in a perturbed land surface parameter experiment. The ensemble of 108 members is constructed by systematically perturbing five poorly constrained land surface parameters of global climate model individually and in all possible combinations. The land surface parameters induce small uncertainties at global scale, substantial uncertainties at regional and seasonal scale and very large uncertainties in the tails of the distribution, the climate extremes. Climate sensitivity varies across the ensemble mainly due to the perturbation of the snow albedo parameterization, which controls the snow albedo feedback strength. The uncertainty range in the global response is small relative to perturbed physics experiments focusing on atmospheric parameters. However, land surface parameters are revealed to control the response not only of the mean but also of the variability of temperature. Major uncertainties are identified in the response of climate extremes to a doubling of CO2. During winter the response both of temperature mean and daily variability relates to fractional snow cover. Cold extremes over high latitudes warm disproportionately in ensemble members with strong snow albedo feedback and large snow cover reduction. Reduced snow cover leads to more winter warming and stronger variability decrease. As a result uncertainties in mean and variability response line up, with some members showing weak and others very strong warming of the cold tail of the distribution, depending on the snow albedo parametrization. The uncertainty across the ensemble regionally exceeds the CMIP3 multi-model range. Regarding summer hot extremes, the uncertainties are larger than for mean summer warming but smaller than in multi-model experiments. The summer precipitation response to a doubling of CO2 is not robust over many regions. Land surface parameter perturbations and natural variability alter the sign of the response even over subtropical regions.
2011-10-01 Web of Science