Generally, with increasing elevation, there is a corresponding decrease in annual mean air and soil temperatures, resulting in an overall decrease in ecosystem carbon dioxide (CO2) exchange. However, there is a lack of knowledge on the variations in CO2 exchange along elevation gradients in tundra ecosystems. Aiming to quantify CO2 exchange along elevation gradients in tundra ecosystems, we measured ecosystem CO2 exchange in the peak growing season along an elevation gradient (9-387 m above sea level, m.a.s.l) in an arctic heath tundra, West Greenland. We also performed an ex-situ incubation experiment based on soil samples collected along the elevation gradient, to assess the sensitivity of soil respiration to changes in temperature and soil moisture. There was no apparent temperature gradient along the elevation gradient, with the lowest air and soil temperatures at the second lowest elevation site (83 m). The lowest elevation site exhibited the highest net ecosystem exchange (NEE), ecosystem respiration (ER) and gross ecosystem production (GEP) rates, while the other three sites generally showed intercomparable CO2 exchange rates. Topography aspect-induced soil microclimate differences rather than the elevation were the primary drivers for the soil nutrient status and ecosystem CO2 exchange. The temperature sensitivity of soil respiration above 0 degrees C increased with elevation, while elevation did not regulate the temperature sensitivity below 0 degrees C or the moisture sensitivity. Soil total nitrogen, carbon, and ammonium contents were the controls of temperature sensitivity below 0 degrees C. Overall, our results emphasize the significance of considering elevation and microclimate when predicting the response of CO2 balance to climate change or upscaling to regional scales, particularly during the growing season. However, outside the growing season, other factors such as soil nutrient dynamics, play a more influential role in driving ecosystem CO2 fluxes. To accurately upscale or predict annual CO2 fluxes in arctic tundra regions, it is crucial to incorporate elevation-specific microclimate conditions into ecosystem models.
Plant biomass reveals the productivity and stability of a biotic community and is extremely sensitive to climate warming in permafrost regions, such as the Qinghai-Tibetan Plateau (QTP) in China. However, the response of the plant biomass of different functional groups to rising temperatures in such alpine zones remains unclear. Here, infrared radiators were used to simulate year-round warming on the QTP from 2011 to 2018. During the 8-year warming experiment, air temperature increased by 0.16 degrees C, while humidity tended to increase by 0.27 % at 20 cm above the ground. However, the rate of the increase in air temperature declined with an increasing number of years. Soil temperature and moisture increased by 1.28 degrees C and 3.61 %, respectively, on average from 0 to 100 cm below the ground, and the increment of soil moisture tended to rise with increasing depth. At the depths from 0 cm to 20 cm below the ground, soil organic carbon and total phosphorus tended to decrease by 0.79 g/kg and 0.04 g/kg, respectively, while soil total nitrogen tended to increase by 0.04 g/kg. Plant biomass had non-significant responses to warming, but the variation among different plant functional groups was greatest for forbs with the increment being 12.50, 147.97, and 160.47 g/m(2) for plants aboveground, belowground, and total biomass, respectively. The ratios of plant total biomass tended to decrease by 2.29 %, increase by 0.60 %, and increase by 1.70 % for grasses, sedges, and forbs, respectively, so warming greatly decreased the proportion of grasses and increased the proportion of forbs in community. Warming weakened the positive correlation of grass biomass with soil temperature and enhanced the negative correlation of grass biomass with soil N and P content, along with weakening the positive correlation of sedge biomass with soil moisture and N content, while enhancing the negative correlation between sedge biomass and soil temperature. Meanwhile, forb biomass was greatly increased by soil temperature in the effects of warming. In conclusion, the 8-year warming produced negative effects on grasses and sedges by increasing soil temperature and N content and thus promoted the growth of forbs, which might induce a shift toward forbs in this community.
Soil nutrient stoichiometry and its environmental controllers play vital roles in understanding soil-plant interaction and nutrient cycling under a changing environment, while they remain poorly understood in alpine grassland due to lack of systematic field investigations. We examined the patterns and controls of soil nutrients stoichiometry for the top 10 cm soils across the Tibetan ecosystems. Soil nutrient stoichiometry varied substantially among vegetation types. Alpine swamp meadow had larger topsoil C:N, C:P, N: P, and C:K ratios compared to the alpine meadow, alpine steppe, and alpine desert. In addition, the presence or absence of permafrost did not significantly impact soil nutrient stoichiometry in Tibetan grassland. Moreover, clay and silt contents explained approximately 32.5% of the total variation in soil C: N ratio. Climate, topography, soil properties, and vegetation combined to explain 10.3-13.2% for the stoichiometry of soil C: P, N: P, and C: K. Furthermore, soil C and N were weakly related to P and K in alpine grassland. These results indicated that the nutrient limitation in alpine ecosystem might shifts from N-limited to P-limited or K-limited due to the increase of N deposition and decrease of soil P and K contents under the changing climate conditions and weathering stages. Finally, we suggested that soil moisture and mud content could be good predictors of topsoil nutrient stoichiometry in Tibetan grassland. (C) 2017 Elsevier B.V. All rights reserved.