Background and AimsPrescribed burning is a widely used management technique, often employed to restore grasslands affected by woody plants encroachment. However, its interaction with pre-existing plant species in influencing soil properties remains unclear.MethodsWe conducted a diachronic soil survey to assess the evolution of several soil properties in the mid-term (up to 18 months) after burning, including physico-chemical parameters and microbial biomass carbon on soils under vegetation patches of different plant functional types and life forms. Vegetation patches included Ericaceae and legume shrubs, ferns, and biocrusts dominated by lichens. Soil samples were taken pre-burning, immediately after burning and 9 and 18 months after.ResultsOur findings indicate that while some soil properties returned to pre-burning levels in the mid-term (i. e., soil cations and NH4+), others, such as available phosphorous (P Olsen), exhibited a significant decline that persisted even 18 months later. Furthermore, soils under legumes initially displayed higher levels of soil carbon and nitrogen compared to other vegetation patches, but this distinction diminished over time. This was likely due to legumes' susceptibility to fire damage, in contrast to the greater resilience of Ericaceae shrubs.ConclusionOur study highlights the complex vegetation patch-dependent effects of prescribed burning on soil properties. While legumes initially enhance soil carbon and nitrogen, their contribution decreases over time due to fire sensitivity. Some soil parameters recover in the mid-term, but nutrients like available phosphorus continue to decline. Fire management strategies should consider plant diversity and recovery time to mitigate soil fertility loss.