共检索到 5

In the northwestern saline soils and coastal areas, cement soil (CS) materials are inevitably subjected to various factors including salt erosion, dry-wet cycle (DWC), temperature fluctuations and dynamic loading during its service life, which the coupling effect of these unfavourable factors seriously threatened the durability and engineering reliability of CS materials. Additionally, combined with the substantially extensive application prospects of rubber cementitious material, as a resource-efficient civil engineering material and fibre-reinforced composites, consequently, in order to address aforementioned issues, this investigation proposed to consider the incorporation of rubber particles composite basalt fiber (BF) to CS materials as an innovative engineering solution to effectively enhance the mechanical and durability properties of CS materials for prolonging its service life. In this study, sulphate ions were utilized to simulate external erosive environment and basalt fibre rubber cement soil (BFRCS) specimens were subjected to various DWC numbers (0, 1, 4, 7, 11 and 15) in diverse concentrations (0 g/L, 6 g/L and 18 g/L) of Na2SO4 solution, and specimens that had completed the corresponding DWC number were then conducted both unconfined and dynamic compressive strength tests simultaneously to analyze static and dynamic stress-strain curves, static and dynamic compressive strength, apparent morphological deterioration characteristics and energy absorption properties of BFRCS specimens. Furthermore, further qualitative and quantitative damage assessments of pore distribution and microscopic morphology of BFRCS specimens under various DWC sulphate erosion environments were carried out from the fine and microscopic perspectives through pore structure test and scanning electron microscopy (SEM) test, respectively. The test results indicated that the static, dynamic compressive strength and specific energy absorption (SEA) of BFRCS specimens exhibited a slight increase followed by a progressive decline as DWC number increased. Additionally, compared to 4 mm BFRCS specimens, those with 0.106 mm rubber particle size demonstrated more favorable resistance to DWC sulphate erosion. The air content, bubble spacing coefficient and average bubble chord length of BFRCS specimens all progressively grew as DWC number increased, while the specific surface area of pores gradually decreased. The effective combination of BF with CS matrix significantly diminished pores and weak areas within specimen, and its synergistic interaction with rubber particles efficiently mitigated the stresses associated with expansive, contraction, crystallization and osmosis subjected by specimen. Simultaneously, more ettringite (AFt) had been observed within BFRCS specimens in 18 g/L sulphate erosive environments. These findings will facilitate the design and construction of CS subgrade engineering in northwestern saline soils and coastal regions, promoting sustainable and durable solutions while reducing the detrimental environmental impact of waste rubber.

期刊论文 2025-08-15 DOI: 10.1016/j.conbuildmat.2025.142083 ISSN: 0950-0618

The treatment of excavated soil using the dry sieving method to produce recycled sand is an effective approach for resource utilization. Currently, the hot-air drying process used in this method exhibits high energy consumption. To address this issue, this study proposes a microwave drying technology to dry the excavated soil. Comparative experiments on microwave (1-6 kW) and hot-air (105-205 degrees C) drying of the excavated soil were conducted. The drying behavior and specific energy consumption of the excavated soil were investigated. The Weibull-Fick combined method was recommended for the segmental determination of the effective moisture diffusion coefficient, and the question of whether microwave drying adversely affects sand particles in the excavated soil was answered. The results revealed the following: Compared with hot-air drying, microwave drying demonstrated shorter drying time (3.5-38 min vs 75-1200 min), lower specific energy consumption (6.2-11.5 MJ/kg vs 22.3-55.4 MJ/kg), and a higher range of effective moisture diffusion coefficient (10-8-10-7 m2/s vs 10-9-10-8 m2/s). With increasing microwave power (3-6 kW), the time required for complete drying of the sample was reduced by up to 56 %. Under microwave drying, relaxing the termination moisture content criterion from 0 to 0.01 resulted in a 17 %-32 % reduction in specific energy consumption, accompanied by a 24 %-36 % decrease in drying time. Microwave drying did not damage sand particles within the excavated soil.

期刊论文 2025-07-11 DOI: 10.1016/j.conbuildmat.2025.141666 ISSN: 0950-0618

Gravelly soil strata exhibit heterogeneity and nonlinearity in their physical and mechanical properties, leading to volatile fluctuations of shield scraper force. Understanding the performance of shield scrapers in gravelly soils is significant for the safe and efficient excavation of tunnel boring machines. This paper conducts unconsolidatedundrained triaxial tests to obtain the mechanical properties of gravelly soils with gravel content ranging from 0 % to 30 %. The process of shield scrapers cutting through gravelly soils is analyzed by combining the varying mechanical properties of gravelly soils with the limit equilibrium analysis method. Subsequently, modified models for predicting the scraper force and specific energy in gravelly soils are established. Based on these models, the impact of key factors on the scraper performance is analyzed. Laboratory experiments are further performed on a rotary test bench to validate these models. The experimental results demonstrate that the horizontal cutting force and specific energy of shield scrapers in gravelly soils can be predicted with mean average errors of 8.8% and 7.3%, respectively, with the errors of all predicted values falling within +/- 20 % of the experimental results. These established models can serve as useful references for the structural and operational design of shield scrapers in gravelly soil strata.

期刊论文 2024-10-01 DOI: 10.1016/j.aej.2024.07.116 ISSN: 1110-0168

There has been an urgent need to develop and analyse multi -layered composite structures with varying material properties to withstand projectile impact. The proposed study focuses on the optimization of the multilayer composite to achieve maximum resistance/energy dissipation. This study investigates the mechanical performance of the proposed multi -layered composite configuration under high strain rate loading through a computational approach. The proposed multi -layered structure incorporates layers of reinforced concrete, boulders, an elastomer layer, an ultra -high-performance concrete panel, and a layer of steel plate. A mesoscalebased approach has been developed for the layer comprising boulders and mortar. A total of six different configurations have been considered to arrive at the most efficient one against projectile impact. Optimization of the proposed configurations has been done by utilizing the concepts of specific energy absorption and shock impedance. Additionally, the fracture and damage characteristics of each configuration are also studied. Ductile hole enlargement in the sandy soil layer, fragmentation failure in the boulders, petaling failure in the steel plate, and spalling failure in the concrete layer have been observed. Based on the specific energy absorption and shock impedance approaches, the optimum laying sequence for the ballistic impact of each material is suggested.

期刊论文 2024-06-15 DOI: 10.1016/j.compstruct.2024.118097 ISSN: 0263-8223

To improve the efficiency of frozen soil excavation, the new shaft tunneling machine was developed. The new shaft tunneling machine exerts pressure on the frozen soil through the cutter under the joint action of its own gravity, the drum rotational force and the inertia force, and the frozen soil is damaged. By unique way of breaking frozen soil to improve the efficiency of frozen soil excavation, the drum rotation speed is one of the factors affecting the performance of frozen soil excavation. This article applies SolidWorks software to establish the model of cutter breaking frozen soil, takes advantage of Hyper Mesh finite element software coupled with LS-DYNA solver to acquire the regular pattern of change in the force change, frozen soil stress-strain and specific energy of cutter crushing frozen soil, etc., which analyzes the destruction of frozen soil when the drum of the new shaft tunneling machine is rotating at the speed of 25-40 rpm. Combine with field test to investigate the mechanism of cutter breaking frozen soil under the optimal drum rotation speed. The investigation results demonstrate that: when frozen soil's self-bearing capacity is lower than the force of cutter, it breaks up and detaches from the soil body, and frozen soil undergoes tensile, compressive and shear damages. For this research, it is instructive for practical engineering.

期刊论文 2024-03-09 DOI: 10.1038/s41598-024-55935-4 ISSN: 2045-2322
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页