Improving our understanding of streamwater age knowledge is critical for revealing the complex hydrological processes in alpine cryosphere catchments. However, few studies on water age have been conducted in alpine cryosphere catchments due to the complicated and inclement environment. In this study, the Buqu catchment, a typical alpine catchment covered by glaciers and permafrost on the central Tibetan Plateau (TP), was selected as the study area. Using the sine-wave ap-proach anda gamma model based on the seasonal cycle of stable isotopes in water, the young water fraction (Fyw) and mean transit time (MTT) of the Buqu catchment outlet and 23 sub-catchments was estimated to comprehensively reveal the potential driving mechanism of water age variability. The streamwater MTT for the entire catchment was 107 days, and 15.1 % of the streamwater was younger than 41 days on average. The estimated water age showed significant spatial heterogeneity with shorter water ages in high-elevation and glacier catchments and longer water ages in low-elevation and non-glacier catchments. Precipitation was the primary driver for spatial variations in water age, while the thickness of the permafrost active layer may function as an intermediate hub to drive water age variability. Mechanically, the thick-ness of the permafrost active layer controls the water ages by modifying the flow direction and length of water flow path. Spatially, this control mechanism is indirectly driven by the elevation gradient. The TDS concentration in streamwater is significantly related to water age, thus revealing a close link between water quality and hydrology. Our findings suggest that cryosphere retreats likely alter water age, thereby slowing water circulation rates and affecting water quality security under global warming. This study provides insights into the evolution of water ages, thereby deepening our understanding of the hydrological processes and guiding the protection of water resources in alpine headwater catchments.
2024-07In arid regions, the stable hydrogen and oxygen isotopic composition in raindrops is often modified by sub-cloud secondary evaporation when they descend from cloud base to ground through the unsaturated air. As a result of kinetic fractionation, the slope and intercept of the delta H-2-delta O-18 correlation equation decrease. The variation of deuterium excess from cloud base to the ground is often used to quantitatively evaluate the influence of secondary evaporation effect on isotopes in precipitation. Based on the event-based precipitation samples collected at Urumqi Glacier No. 1, eastern Tianshan during four-year observation, the existence and impact of secondary evaporation effects were analyzed by the methods of isotope-evaporation model. Under high air temperature, small raindrop diameter and precipitation amount, and low relative humidity conditions, the remaining rate of raindrops is small and the change of deuterium excess is large relatively, and the slope and intercept of delta H-2-delta O-18 correlation equation are much lower than those of Global Meteoric Water Line, which mean that the influence secondary evaporation on precipitation enhanced. While on the conditions of low air temperature, high relative humidity, heavy rainfall, and large raindrop diameter, the change of deuterium excess is small relatively and the remaining rate of raindrops is large, and the slope and intercept of delta H-2-delta O-18 correlation equation increase, the secondary evaporation is weakened. The isotope-evaporation model described a good linear correlation between changes of deuterium excess and evaporation proportion with the slope of 0.90%/%, which indicated that an increase of 1% in evaporation may result in a decrease of deuterium excess about 0.90%.
2024-02Increased permafrost temperatures have been reported in the circum-Arctic, and widespread degradation of permafrost peatlands has occurred in recent decades. The timing of permafrost aggradation in these ecosystems could have implications for the soil carbon lability upon thawing, and an increased understanding of the permafrost history is therefore needed to better project future carbon feedbacks. In this study, we have conducted high-resolution plant macrofossil and geochemical analyses and accelerator mass spectrometry radiocarbon dating of active layer cores from four permafrost peatlands in northern Sweden and Norway. In the mid-Holocene, all four sites were wet fens, and at least three of them remained permafrost-free until a shift in vegetation toward bog species was recorded around 800 to 400 cal. BP, suggesting permafrost aggradation during the Little Ice Age. At one site, Karlebotn, the plant macrofossil record also indicated a period of dry bog conditions between 3300 and 2900 cal. BP, followed by a rapid shift toward species growing in waterlogged fens or open pools, suggesting that permafrost possibly was present around 3000 cal. BP but thawed and was replaced by thermokarst.
2023-12-31 Web of ScienceThis study reports day-night and seasonal variations of aqueous brown carbon (BrCaq) and constituent humic-like substances (HULIS) (neutral and acidic HULIS: HULIS-n and HULIS-a) from the eastern Indo-Gangetic Plain (IGP) of India during 2019-2020. This is followed by the application of the receptor model positive matrix factorization (PMF) for optical source apportionment of BrCaq and the use of stable isotopic ratios (813C and 815N) to understand atmospheric processing. Nighttime BrCaq absorption and mass absorption efficiencies (MAE) were enhanced by 40-150 % and 50-190 %, respectively, compared to the daytime across seasons, possibly as a combined effect from daytime photobleaching, dark-phase secondary formation, and increased nighttime emissions. MAE250 nm/MAE365 nm (i.e., E2/E3) ratios and Angstrom Exponents revealed that BrCaq and HULIS-n were relatively more aromatic and conjugated during the biomass burning-dominated periods while BrCaq and HULIS-a were comprised mostly of nonconjugated aliphatic structures from secondary processes during the photochemistry-dominated summer. The relative radiative forcing of BrCaq with respect to elemental carbon (EC) was 10-12 % in the post-monsoon and winter in the 300-400 nm range. Optical source apportionment using PMF revealed that BrCaq absorption at 300, 365 and 420 nm wavelengths in the eastern IGP is mostly from biomass burning (60-75 %), followed by combined marine and fossil fuel-derived sources (24-31 %), and secondary processes (up to 10 %). Source-specific MAEs at 365 nm were estimated to be the highest for the combined marine and fossil fuel source (1.34 m2 g-1) followed by biomass burning (0.78 m2 g-1) and secondary processing (0.13 m2 g-1). Finally, 813C and 815N isotopic analysis confirmed the importance of summertime photochemistry and wintertime NO3--dominated chemistry in constraining BrC characteristics. Overall, the quantitative apportionment of BrCaq sources and processing reported here can be expected to lead to targeted source-specific measurements and a better understanding of BrC climate forcing in the future.
2023-10-10 Web of ScienceA total of 256 water samples were collected from the river, precipitation, and permafrost active layer in a typical small alpine catchment during the ablation periods in 2020 and 2021. The results indicated that every water body was alkaline, and the TDS and EC concentrations were in the following order: precipitation Ca2+ & AP; Mg2+ and Na+ + K+ > Mg2+ > Ca2+, respectively; the anion concentration showed the order of SO42 � > Cl- > NO3 . The results revealed that permafrost and river water had similar geochemical compositions. Similar & delta;2H and & delta;18O values were also observed between river and permafrost water. Additionally, the water chemistry of rivers and permafrost revealed that the chemical weathering of carbonate and silicate rocks is an important source of riverine solutes; however, silicate weathering played a more crucial role. Both hydrochemistry and stable isotopes collectively indicated that there was a close hydraulic connectivity between the water content in river and permafrost active layer in the small alpine catchment. Based on the end-member mixing analysis model, the water in permafrost active layer and precipitation accounted for 62% and 38% of the runoff, respectively, indicating that it was dominated by permafrost during the ablation period. The warming and hu-midification of climate tend to facilitate permafrost degradation. Thus, studying the transformation of different water bodies in alpine regions is imperative to provide water resource security and sustainable development in alpine regions.
2023-07-01 Web of ScienceGlobal warming has significantly impacted the hydrological processes in alpine cryosphere region. Water age is an essential descriptor of the hydrological function within a catchment. However, the mechanism of streamwater age variability remains unclear due to limited observational data and high altitudes of alpine catchment. In this study, long-term stable isotopic data on streamwater in a catchment in the central Tibetan Plateau (TP) were collected to assess the water age using the sine-wave approach and gamma distribution. Results showed that the mean streamwater age was 77 days, and that 30 % of streamwater was less than 41 days old on average. The streamwater age in this study was relatively younger than that in low-elevation natural catchments, indicating that the rapid drainage process occurs within the glacier and permafrost catchment. The fraction of young water (Fyw) of the streamwater decreased from 39 % at an upstream site to 28 % at the outlet, revealing the impact of permafrost (low Fyw: 25 %) on streamwater age. These variabilities were related to glacier and permafrost coverage, specifically in catchments with higher glacier coverage that are prone to have a lower water age. Temporally, the streamwater age was significantly influenced by precipitation, relative humidity, and glacier change and, to a lesser extent, permafrost change. Mechanically, glacier and permafrost changes influenced the water age by increasing the vertical flowpath length. This study provides new insights into the change in hy-drological processes in alpine headwater catchments under global warming.
2023-06The Arctic soil communities play a vital role in stabilizing and decomposing soil carbon, which affects the global carbon cycling. Studying the food web structure is critical for understanding biotic interactions and the functioning of these ecosystems. Here, we studied the trophic relationships of (microscopic) soil biota of two different Arctic spots in Ny-angstrom lesund, Svalbard, within a natural soil moisture gradient by combining DNA analysis with stable isotopes as trophic tracers. The results of our study suggested that the soil moisture strongly influenced the diversity of soil biota, with the wetter soil, having a higher organic matter content, hosting a more diverse community. Based on a Bayesian mixing model, the community of wet soil formed a more complex food web, in which bacterivorous and detritivorous pathways were important in supplying carbon and energy to the upper trophic levels. In contrast, the drier soil showed a less diverse community, lower trophic complexity, with the green food web (via unicellular green algae and gatherer organisms) playing a more important role in channelling energy to higher trophic levels. These findings are important to better understand the soil communities inhabiting the Arctic, and for predicting how the ecosystem will respond to the forthcoming changes in precipitation regimes. Wetter soils, with a higher organic matter content, host more diverse soil biota and support more complex food webs, in which bacterivorous and detritivorous pathways are relevant in supplying energy.
2023-05-31 Web of ScienceImproving our understanding of streamwater age knowledge is critical for revealing the complex hydrological processes in alpine cryosphere catchments. However, few studies on water age have been conducted in alpine cryosphere catchments due to the complicated and inclement environment. In this study, the Buqu catchment, a typical alpine catchment covered by glaciers and permafrost on the central Tibetan Plateau (TP), was selected as the study area. Using the sine-wave ap-proach anda gamma model based on the seasonal cycle of stable isotopes in water, the young water fraction (Fyw) and mean transit time (MTT) of the Buqu catchment outlet and 23 sub-catchments was estimated to comprehensively reveal the potential driving mechanism of water age variability. The streamwater MTT for the entire catchment was 107 days, and 15.1 % of the streamwater was younger than 41 days on average. The estimated water age showed significant spatial heterogeneity with shorter water ages in high-elevation and glacier catchments and longer water ages in low-elevation and non-glacier catchments. Precipitation was the primary driver for spatial variations in water age, while the thickness of the permafrost active layer may function as an intermediate hub to drive water age variability. Mechanically, the thick-ness of the permafrost active layer controls the water ages by modifying the flow direction and length of water flow path. Spatially, this control mechanism is indirectly driven by the elevation gradient. The TDS concentration in streamwater is significantly related to water age, thus revealing a close link between water quality and hydrology. Our findings suggest that cryosphere retreats likely alter water age, thereby slowing water circulation rates and affecting water quality security under global warming. This study provides insights into the evolution of water ages, thereby deepening our understanding of the hydrological processes and guiding the protection of water resources in alpine headwater catchments.
2023-03-25 Web of SciencePermafrost degradation due to climate warming is currently observed in the northeastern part of European Russia. Peat plateaus underlain by permafrost cover only about 20% of the Russian European cryolithozone but contain almost 50% of soil organic carbon stocks (SOC), which are considered to be vulnerable to microbial mineralization after permafrost thaw. The current study was performed at three key sites of peat plateaus located along the southern permafrost limit. SOC decomposition was studied by aerobic and anaerobic incubation experiments, conducted at 4 degrees C over a period of 1301 days. The CO2 production was measured in peat samples at three key sites from the active layer (AL), transitional layer (TL), permafrost layer (PL), and at one site from the deep permafrost layer (DPL), which is in contact with mineral soil at 3.7 m depth. During the experiment, the initial CO2 respiration rates significantly differed in the samples AL, TL and PL in all key sites. However, at each site in the majority of samples the CO2 respiration rates were 2-5 times aerobically higher than anaerobically. In anaerobic conditions, in all sites, the CO2 respiration rate in PL was the lowest, higher in TL and the highest in AL in all 3 sites. Projections of CO2 aerobically production for 80 years represent 1.44 +/- 0.11, 6.31 +/- 0.47, 30.64 +/- 17.98% of initial permafrost carbon from the samples of Inta 1, Inth 11 and Kolva respectively. But under anaerobical conditions estimates are close and indicate insignificant amounts 0.30... 1.90% of carbon release over a period of 80 years. We suggest that even under ideal conditions of the incubation experiment, without considering ecological inertia under natural conditions, while also permafrost temperature is close to zero, greenhouse gas release from initial SOC is significantly less than estimated.
2022-07-01 Web of ScienceThe major ions in precipitation can reflect the conditions of the atmosphere, while stable isotopic characteristics provide information on the moisture source. In order to understand the local hydro-chemical features and regional geochemical cycle, it is essential to assess the chemical composition of precipitation and the associated sources. Therefore, a total of 57 precipitation samples (2016 to 2017) for major ions and 178 samples (2013 to 2017) for stable isotopes were collected from the Wengguo station and analyzed to explore the major ionic deposition and stable isotopic characteristics in the northern slopes of the Himalayas. The average pH and electrical conductivity were 6.82 +/- 0.45 and 15.36 +/- 11.67 mu S cm(-1), respectively. Ca2+ followed by K+ and Mg2+ played a crucial role in neutralizing the precipitation acidity. The major ionic sources in the region were terrigenous (Ca2+, HCO3-, and Mg2+) and sea salt (Na+, Cl-, and Mg2+), as well as anthropogenic emissions (SO42- and NO3-) and biomass burning (K+). The total deposition flux of the major ions was higher in 2016 than in 2017 and was influenced by the higher precipitation. The average values of delta O-18 and delta D in precipitation were - 15.22 +/- 5.17 parts per thousand and - 116.01 +/- 41.31 parts per thousand, respectively. The precipitation stable isotopes were not significantly correlated to the local air temperature but the precipitation amount. Moreover, the variation in stable isotopes, local meteoric water line, and d-excess indicated the existence of continental and monsoon moisture transport systems. The transport of chemicals over the high elevation region from polluted cities in South Asia via moisture originating in the Bay of Bengal and the Arabian Sea was determined based on the source identification, clusters of air mass backward trajectory analysis, and the National Center for Environmental Prediction Final dataset. Thus, the ionic concentrations and stable isotopic characteristics of the precipitation from this study provided a valuable dataset to assess the atmospheric environment in the northern slopes of the Himalayas at Southern Tibetan Plateau.
2021