共检索到 5

Background The bacterial mechanisms responsible for hydrogen peroxide (H2O2) scavenging have been well-reported, yet little is known about how bacteria isolated from cold-environments respond to H2O2 stress. Therefore, we investigated the transcriptional profiling of the Planomicrobium strain AX6 strain isolated from the cold-desert ecosystem in the Qaidam Basin, Qinghai-Tibet Plateau, China, in response to H2O2 stress aiming to uncover the molecular mechanisms associated with H2O2 scavenging potential. Methods We investigated the H2O2-scavenging potential of the bacterial Planomicrobium strain AX6 isolated from the cold-desert ecosystem in the Qaidam Basin, Qinghai-Tibet Plateau, China. Furthermore, we used high-throughput RNA-sequencing to unravel the molecular aspects associated with the H2O2 scavenging potential of the Planomicrobium strain AX6 isolate. Results In total, 3,427 differentially expressed genes (DEGs) were identified in Planomicrobium strain AX6 isolate in response to 4 h of H2O2 (1.5 mM) exposure. Besides, Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology analyses revealed the down- and/or up-regulated pathways following H2O2 treatment. Our study not only identified the H2O2 scavenging capability of the strain nevertheless also a range of mechanisms to cope with the toxic effect of H2O2 through genes involved in oxidative stress response. Compared to control, several genes coding for antioxidant proteins, including glutathione peroxidase (GSH-Px), Coproporphyrinogen III oxidase, and superoxide dismutase (SOD), were relatively up-regulated in Planomicrobium strain AX6, when exposed to H2O2. Conclusions Overall, the results suggest that the up-regulated genes responsible for antioxidant defense pathways serve as essential regulatory mechanisms for removing H2O2 in Planomicrobium strain AX6. The DEGs identified here could provide a competitive advantage for the existence of Planomicrobium strain AX6 in H2O2-polluted environments.

期刊论文 2024-07-01 DOI: http://dx.doi.org/10.1186/s12866-022-02677-w ISSN: 1471-2180

The current water environment carrying capacity assessment method has a single assessment index and does not constrain the scope of assessment. It is not possible to adaptively assess the water environment carrying capacity layer by layer. In order to solve this problem, in this paper. we propose an adaptive assessment method of urban water environment carrying capacity based on water quality target constraints. This method constructs a new evaluation index system for water environment carrying capacity, which takes water resources and environment, water pollution control, and economic carrying capacity as the criteria, and takes water quality status, pollution discharge, technology management. economic development, and social development as the constraint target layer, and takes the total wastewater discharge, industrial water consumption, and urbanization level as the constraint index layer. Two methods of structural entropy weight and mean square error decision are introduced to realize the adaptive joint weight assignment evaluation of the reference layer and the target layer. Through experimental analysis, the assessed area has a good water environment carrying capacity and foundation, and the overall water environment carrying capacity of the study area from 2016 to 2019 was on the rise.

期刊论文 2024-02-01 ISSN: 1018-4619

Estimates of the effective radiative forcing from aerosol-radiation interaction (ERFari) of anthropogenic Black Carbon (BC) have been disputable and require better constraints. Here we find a substantial decline in atmospheric absorption of -5.79Wm(-2)decade(-1) over eastern central China (ECC) responding to recent anthropogenic BC emission reductions. By combining the observational finding with advances from Coupled Model Intercomparison Project phase6 (CMIP6), we identify an emergent constraint on the ERFari of anthropogenic BC. We show that across CMIP6 models the simulated trends correlate well with simulated annual mean shortwave atmospheric absorption by anthropogenic BC over China. Making use of this emergent relationship allows us to constrain the aerosol absorption optical depth of anthropogenic BC and further provide a constrained range of 2.4-3.0 Wm(-2) for its top-of-atmosphere ERFari over China, higher than existing estimates. Our work supports a strong warming effect of BC over China, and highlights the need to improve BC simulations over source regions.

期刊论文 2022-05-28 DOI: 10.1029/2022GL098965 ISSN: 0094-8276

The Qinghai-Tibet Railway (QTR) is the highest plateau artificial facility, connecting Lhasa and Golmud over Qinghai-Tibet Plateau. Climate change and anthropogenic activities are changing the condition of plateau, with potential influences on the stabilities of QTR. Synthetic aperture radar interferometry (InSAR) technique could retrieve ground millimeter scale deformation utilizing phase information from SAR images. In this study, the structure and deformation features of QTR are retrieved and analyzed using time-series interferometry with Sentinel-1A and TerraSAR-X images. The backscattering and coherence features of QTR are analyzed in medium and very high-resolution SAR images. Then, the deformation results from different SAR datasets are estimated and analyzed. Experimental results show that some of the QTR sections undergo serious deformation, with the maximum deformation rate of -20 mm/year. Moreover, the detailed deformation feature in the Beiluhe has been analyzed as well as the effects of different cooling measurements underline QTR embankment. It is also found that embankment-bridge transition along QTR is prone to undergo deformation. Our study demonstrates the application potential of high-resolution InSAR in deformation monitoring of QTR.

期刊论文 2019-12-01 DOI: 10.1109/JSTARS.2019.2954104 ISSN: 1939-1404
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页