In order to accurately measure the internal stress-strain curve of plain concrete specimens and confined concrete specimens under compression, a new measurement method is proposed, which adopts conventional strain gauges to measure the internal strain data of the specimens, and the micro soil pressure box with ultra-large range is developed to measure the internal stress of the specimens. The uniaxial compression tests of 3 plain concrete specimens and 9 confined concrete specimens are completed, and the macroscopic failure process of the specimens and the stress-strain curves at different internal points are obtained. Combined with the experimental results, the accuracy of the calculation results of several classical confined concrete constitutive models is compared, and a modified constitutive model is proposed. Solid finite element analysis is used to analyze the stress-strain curves at different points inside the specimens, and the prediction accuracy of different constitutive models is compared. On this basis, nonlinear finite element analysis is used to verify the quasi-static test of RC columns, and the accuracy of different constitutive models in the nonlinear analysis at the component level is compared and analyzed. The results show that the measurement method proposed in this study can accurately measure the stress-strain data internal the concrete. The calculation results of the modified constitutive model proposed in this study are in the best agreement with the test results, and have a wide range of applications, which can be applied to the measurement of internal stress-strain curves of other different types of specimens.
Food security is an important guarantee for national security and public health. Underground reinforced concrete (RC) grain silos can provide a quasi-low temperature environment for grain storage, effectively ensuring the quality of the stored grain. The stress status of the underground silo during soil backfilling construction is complex, which puts the structure at risk of failure. The present study developed a numerical simulation method to investigate the mechanical properties of underground silos during backfilling construction processes. A finite element (FE) analysis of the backfilling construction process of an underground RC grain silo was conducted, and the nonlinear contact between the underground silo and the surrounding soil, as well as the material nonlinear behavior of the soil, was considered. The deformation characteristics and stress distribution of the underground silo during the backfilling construction process were revealed. The results indicate that the underground RC grain silo exhibits good mechanical performance. The underground silo underwent overall settlement during the backfilling construction process, with a total settlement of 21 mm. The maximum radial displacement of the silo wall and the maximum deflection of the radial primary beam were 0.84 mm and 5.67 mm, respectively, both of which were smaller than the limit values. After the completion of backfilling construction, there was a high risk of concrete cracking of the silo wall. The maximum radial and circumferential tensile stresses of the concrete at the silo top were both high, which led to cracking in the top of the silo. Our research results provide important support for the design and evaluation of underground RC grain silos.
The practical application of micropiles in landslide reinforcement and prevention advanced before theoretical research, significantly limiting their application and promotion. To determine the damage patterns and stress distribution of micropiles during sliding failure in reinforced shallow landslides, three sets of physical modeling tests were performed. These tests examined the stability of shallow soil slopes with and without micropiles, including single-row and three-row configurations. During the tests, the foot displacement of the landslide, the top displacement of the micropiles, and the strain within the micropiles were monitored throughout the loading process. Following the tests, the landslide was excavated to observe the damage patterns in the micropiles. The experimental results showed that the pile-soil composite structure formed by three rows of micropiles, together with the soil between them, significantly improved the stability of the landslide and demonstrated effective anti-sliding effects. The stress distribution curve of the micropile was inversely S-shaped, with the peak stress located near the sliding surface. Within the micropile group, the first row exhibited the highest stress, and the micropiles nearest to the free face experienced the greatest displacement. Through the micropile-reinforced landslide tests, we identified three stages in the slope's sliding damage process and the stress distribution pattern of the micropiles. The research findings offer valuable insights into the anti-sliding mechanism of micropiles, which can guide design and construction.
Bank failures in alluvial rivers are a typical soil-water interaction problem, which is related to many factors including the direct action of flow, river stage change, and human actions (such as bank revetment). To investigate the failure mechanism of protected riverbanks and possible factors affecting their stability, we analyzed data measured from a typical reach of the Middle Yangtze River. Furthermore, we performed numerical simulations of seepage and stress variation inside the riverbank. The field observation and simulated results indicated that: (1) Hydraulic erosion by near -bank flow remains the primary factor influencing the erosion of the protected riverbank. However, the bank protection works effectively limit the lateral bank retreat but increase the incision of the nearby riverbed, with the largest erosion depth of 10.6 m during August to November in 2020. (2) The initial damage in protected banks may be triggered by local tensile stress concentration during the water-rising period, under the combined actions of hydrostatic confining force, pore water pressure and gravity. This initial damage will progress into more severe bank failure events, particularly during the flood period. (3) After the regulation of the Three Gorges Project, the increased changing rate of river stage (similar to 1.6-2.5 fold) could potentially increase the risk of damage to protected riverbanks in the Middle Yangtze River.
For expedited transportation, vehicular tunnels are often designed as two adjacent tunnels, which frequently experience dynamic stress waves from various orientations during blasting excavation. To analyze the impact of dynamic loading orientation on the stability of the twin -tunnel, a split Hopkinson pressure bar (SHPB) apparatus was used to conduct a dynamic test on the twin -tunnel specimens. The two tunnels were rotated around the specimen's center to consider the effect of dynamic loading orientation. LS-DYNA software was used for numerical simulation to reveal the failure properties and stress wave propagation law of the twin -tunnel specimens. The findings indicate that, for a twin -tunnel exposed to a dynamic load from different orientations, the crack initiation position appears most often at the tunnel corner, tunnel spandrel, and tunnel floor. As the impact direction is created by a certain angle (30 degrees, 45 degrees, 60 degrees, 120 degrees, 135 degrees, and 150 degrees), the fractures are produced in the middle of the line between the left tunnel corner and the right tunnel spandrel. As the impact loading angle (a) is 90 degrees, the tunnel sustains minimal damage, and only tensile fractures form in the surrounding rocks. The orientation of the impact load could change the stress distribution in the twin -tunnel, and major fractures are more likely to form in areas where the tensile stress is concentrated. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY -NC -ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).