In alpine tundra regions, snowmelt plays a crucial role in creating spatial heterogeneity in soil moisture and nutrients across various terrains, influencing vegetation distribution. With climate warming, snowmelt has advanced, lengthening the growing season while also increasing the risk of frost damage to evergreen dwarf shrubs like Rhododendron aureum in alpine tundra regions. To understand these long-term effects, we used remote sensing imagery to analyze nearly four decades (1985-2022) of snowmelt date and the distribution change of R. aureum in Changbai Mountain, East China's only alpine tundra. Results show that snowmelt advanced by 1-3 days/10 years, with faster rates at higher elevations and shady slopes (0.4-0.6 days/10 years more than sunny slopes), while R. aureum increased more on shady slopes under such conditions. Our study demonstrates that these shifts in snowmelt date vary significantly across topographies and reveals how topography and snowmelt changes interact to shape the distribution of evergreen shrubs under climate warming.
Water loss in paddy fields occurs through various pathways, and previous studies have primarily focused on water seepage in the field, often overlooking the potential for the field-bund area. In this study, 3 typical paddy fields in the plain river network area of southeastern China were selected to clarify the differences in the soil structure and hydraulic characteristics at different positions within the field-bund area: the field, inner bund, middle bund and outer bund. The interactions between basic soil properties and hydraulic characteristics were also evaluated. The results revealed that the outer bund presented the lowest soil porosity (6.92 %), followed by the field (7.52 %), middle bund (7.77 %), and inner bund (8.09 %). The soil pores in the field presented the smallest mean diameter and fractal dimension and the highest degree of anisotropy. The deep layer of the bund contained more macropores, and the soil pores exhibited greater spatial distribution heterogeneity. The bottom layer in the field and bund presented the lowest average Ks value of only 0.05 mm min(-1), indicating the presence of a plow pan and a notable tendency for lateral seepage. Differences in the soil structure and hydraulic parameters between the field and bund created a driving force for lateral seepage and rendered the field-bund area a hotspot for water loss. For the analysis of the underlying water loss mechanism, the structural equation model represented 65 % of the total variance in the hydraulic parameters. The micropore characteristics had the greatest positive direct effect on the hydraulic parameters, with a standardized path coefficient of 0.39 (p < 0.001). The soil physical properties were not directly related to the hydraulic parameters but exerted an indirect effect through aggregate stability and micropore and macropore characteristics, with a total indirect standardized path coefficient of -0.41.
In permafrost regions, vegetation growth is influenced by both climate conditions and the effects of permafrost degradation. Climate factors affect multiple aspects of the environment, while permafrost degradation has a significant impact on soil moisture and nutrient availability, both of which are crucial for ecosystem health and vegetation growth. However, the quantitative analysis of climate and permafrost remains largely unknown, hindering our ability to predict future vegetation changes in permafrost regions. Here, we used statistical methods to analyze the NDVI change in the permafrost region from 1982 to 2022. We employed correlation analysis, multiple regression residual analysis and partial least squares structural equation modeling (PLS-SEM) methods to examine the impacts of different environmental factors on NDVI changes. The results show that the average NDVI in the study area from 1982 to 2022 is 0.39, with NDVI values in 80% of the area remaining stable or exhibiting an increasing trend. NDVI had the highest correlation with air temperature, averaging 0.32, with active layer thickness coming in second at 0.25. Climate change plays a dominant role in NDVI variations, with a relative contribution rate of 89.6%. The changes in NDVI are positively influenced by air temperature, with correlation coefficients of 0.92. Although the active layer thickness accounted for only 7% of the NDVI changes, its influence demonstrated an increasing trend from 1982 to 2022. Overall, our results suggest that temperature is the primary factor influencing NDVI variations in this region.
Dust storms are natural events that remove and relocate surface soil, damage vegetation crops, and disrupt many other aspects of the earth 's terrestrial ecosystem. Despite the importance of the risk assessment of dust hazards, vulnerability modeling of them is very limited. For this reason, this study provides a conceptual model based on Structural Equation Modeling and the Finite Mixture Partial Least Squares (FIMIX-PLS) approach using interviews and questions for vulnerability modeling of dust in Ahvaz County, Khuzestan province, Iran. Key model drivers included Resilience Actions, Natural-Physical effects, Economic Influence, and Social Influence. The Aerosol Optical Depth (AOD) product of MODIS/Terra was used to develop a dust hazard map. MODIS/Terra performance was evaluated using observed PM10 data from Ahvaz County air pollution monitoring stations. Land use mapping was used for spatial detection of agricultural land affected by the intensity of the AOD map in the previous step. The vulnerability model fitting results showed that the model had acceptable validity (SRMR = 0.013). Results showed that approximately 25 % of agricultural lands are at high and very high dust hazard risk. Based on modeling results, natural-physical variables affect about 89 % and 97 % of social and economic drivers, respectively. Conversely, social influences significantly negatively affect dust storm resilience resulting in agricultural vulnerability. Based on results from the integrated model, strengthening farmers ' resilience strategies against dust hazards requires additional research and attention.
Litter decomposition represents a major path for atmospheric carbon influx into Arctic soils, thereby controlling below-ground carbon accumulation. Yet, little is known about how tundra litter decomposition varies with microenvironmental conditions, hindering accurate projections of tundra soil carbon dynamics with future climate change. Over 14 months, we measured landscape-scale decomposition of two contrasting standard litter types (Green tea and Rooibos tea) in 90 plots covering gradients of micro-climate and -topography, vegetation cover and traits, and soil characteristics in Western Greenland. We used the tea bag index (TBI) protocol to estimate relative variation in litter mass loss, decomposition rate (k) and stabilisation factor (S) across space, and structural equation modelling (SEM) to identify relationships among environmental factors and decomposition. Contrasting our expectations, microenvironmental factors explained little of the observed variation in both litter mass loss, as well as k and S, suggesting that the variables included in our study were not the major controls of decomposer activity in the soil across the studied tundra landscape. We use these unexpected findings of our study combined with findings from the current literature to discuss future avenues for improving our understanding of the drivers of tundra decomposition and, ultimately, carbon cycling across the warming Arctic.
Legumes play a crucial role in the restoration and utilization of salinized grassland. To explore the physiological response mechanism of Astragalus membranaceus and Medicago sativa seedlings to salt stress, salt stress culture experiments with five NaCl concentration treatments (0 mmol/L, 50 mmol/L, 100 mmol/L, 200 mmol/L, and 300 mmol/L) were conducted on these two legume seedlings. Morphological characteristics, physiological features, biomass, and the protective enzyme system were measured for both seedlings. Correlation analysis, principal component analysis (PCA), and membership function analysis (MFA) were conducted for each index. Structural equation modeling (SEM) was employed to analyze the salt stress pathways of plants. The results indicated that number of primary branches (PBN), ascorbate peroxidase (APX) activity in stems and leaves, catalase (CAT) activity in roots, etc. were identified as the primary indicators for evaluating the salt tolerance of A. membranaceus during its seedling growth period. And CAT and peroxidase (POD) activity in roots, POD and superoxide dismutase (SOD) activity in stems and leaves, etc. were identified as the primary indicators for evaluating the salt tolerance of M. sativa during its growth period. Plant morphological characteristics, physiological indexes, and underground biomass (UGB) were directly affected by salinity, while physiological indexes indirectly affected the degree of leaf succulence (LSD). Regarding the response of the protective enzyme system to salt stress, the activity of POD and APX increased in A. membranaceus, while the activity of CAT increased in M. sativa. Our findings suggest that salt stress directly affects the growth strategies of legumes. Furthermore, the response of the protective enzyme system and potential cell membrane damage to salinity were very different in the two legumes.
1. Factors shaping arthropod and plant community structure at fine spatial scales are poorly understood. This includes microclimate, which likely plays a large role in shaping local community patterns, especially in heterogeneous landscapes characterised by high microclimatic variability in space and in time.2. We explored differences in local microclimatic conditions and regional species pools in two subarctic regions: Kilpisj & auml;rvi in north-west Finland and Varanger in north-east Norway. We then investigated the relationship between fine-scale climatic variation and local community characteristics (species richness and abundance) among plants and arthropods, differentiating the latter into two groups: flying and ground-dwelling arthropods collected by Malaise and pitfall traps, respectively. Arthropod taxa were identified through DNA metabarcoding. Finally, we examined if plant richness can be used to predict patterns in arthropod communities.3. Variation in soil temperature, moisture and snow depth proved similar between regions, despite differences in absolute elevation. For each group of organisms, we found that about half of the species were shared between Kilpisj & auml;rvi and Varanger, with a quarter unique to each region.4. Plants and arthropods responded largely to the same drivers. The richness and abun-dance of both groups decreased as elevation increased and were positively correlated with higher soil moisture and temperature values. Plant species richness was a poor predictor of local arthropod richness, in particular for ground-dwelling arthropods.5. Our results reveal how microclimatic variation within each region carves pro-nounced, yet consistent patterns in local community richness and abundance out of a joint species pool.
Large uncertainties exist in carbon-water-climate feedbacks in cold regions, partly due to an insufficient understanding of the simultaneous effects of climatic and biotic controls on water and carbon dynamics. The 10-year growing season flux data were analyzed to evaluate the relative contributions of climatic and biotic effects on the variability of water vapor (ET) and net ecosystem CO2 (NEE) exchanges over a humid alpine deciduous shrubland on the northeastern Qinghai-Tibetan Plateau. The results showed that the alpine shrubland ecosystem acted as a water source and a carbon sink during the growing season, and its potential ET and NEE ranged from 161.4 mm and -41.0 g Cm-2 to 408.0 mm and -278.4 gCm(-2) at a 95% confidence interval, respectively. The average 8-day ET and NEE during the early growing season (June to July) were both significantly (P < 0.05) more than those of the late growing season (August to September). And the slopes of ET and NEE against the Julian day during the two growth stages also changed significantly (P < 0.01). Such asymmetric manners of ET and NEE during the two growth stages were probably related to the seasonal variations of net radiation (Rn) and vegetation growth (satellite-derived enhanced vegetation index: EVI), respectively. The structural equation models showed that the seasonal variations of 8-day ET were jointly determined by Rn and vapor pressure deficit (VPD), as partly indicated by a modest decoupling coefficient (0.54 +/- 0.03). The seasonal variability in 8-day NEE was controlled by the combinations of EVI and growing season degree days (GDD). The standardized coefficient of the direct effect of EVI on ET was 0.16, much less than the corresponding value (0.51) on NEE, suggesting that a weak coupling between ET and NEE arose likely because water vapor loss were about half controlled by surface evaporation, whereas CO2 flux were largely regulated by vascular plant activity. Our results highlighted the asymmetric sensitivities of ET and NEE during the early and the late growing season, and the weak coupling of water loss and carbon fixation during the whole growing season. These findings would provide a new sight to understand the growth stage-dependent responses of water budget and carbon sequestration to grazing management and climate change in humid alpine shrublands.
Permafrost regions with high soil organic carbon (SOC) storage are extremely vulnerable to global warming. However, our understanding of the temperature sensitivity of SOC decomposition in permafrost regions remains limited, leading to considerable uncertainties in predicting carbon-climate feedback magnitude and direction in these regions. Here, we investigate general patterns and underlying mechanisms of SOC decomposition rate and its temperature sensitivity (Q(10)) at different soil depths across Tibetan permafrost regions. Soils were collected at two depths (0-10 and 20-30 cm) from 91 sites across Tibetan permafrost regions. SOC decomposition rate and Q(10) value were estimated using a continuous-flow incubation system. We found that the SOC decomposition rate in the upper layer (0-10 cm) was significantly greater than that in the lower layer (20-30 cm). The SOC content governed spatial variations in decomposition rates in both soil layers. However, the Q(10) value in the upper layer was significantly lower than that in the lower layer. Soil pH and SOC decomposability had the greatest predictive power for spatial variations in Q(10) value within the upper and lower layers, respectively. Owing to the greater temperature sensitivity in the lower layer, our results imply that subsurface soil carbon is at high risk of loss, and that soil carbon sequestration potential might decrease in these regions in a warming world.
Seasonal soil freeze-thaw events may enhance soil nitrogen transformation and thus stimulate nitrous oxide (N2O) emissions in cold regions. However, the mechanisms of soil N2O emission during the freeze-thaw cycling in the field remain unclear. We evaluated N2O emissions and soil biotic and abiotic factors in maize and paddy fields over 20 months in Northeast China, and the structural equation model (SEM) was used to determine which factors affected N2O production during non-growing season. Our results verified that the seasonal freeze-thaw cycles mitigated the available soil nitrogen and carbon limitation during spring thawing period, but simultaneously increased the gaseous N2O-N losses at the annual time scale under field condition. The N2O-N cumulative losses during the non-growing season amounted to 0.71 and 0.55 kg N ha(-1) for the paddy and maize fields, respectively, and contributed to 66 and 18% of the annual total. The highest emission rates (199.2-257.4 mu g m(-2) h(-1)) were observed during soil thawing for both fields, but we did not observe an emission peak during soil freezing in early winter. Although the pulses of N2O emission in spring were short-lived (18 d), it resulted in approximately 80% of the non-growing season N2O-N loss. The N2O burst during the spring thawing was triggered by the combined impact of high soil moisture, flush available nitrogen and carbon, and rapid recovery of microbial biomass. SEM analysis indicated that the soil moisture, available substrates including NH4+ and dissolved organic carbon (DOC), and microbial biomass nitrogen (MBN) explained 32, 36, 16 and 51% of the N2O flux variation, respectively, during the non-growing season. Our results suggested that N2O emission during the spring thawing make a vital contribution of the annual nitrogen budget, and the vast seasonally frozen and snow-covered croplands will have high potential to exert a positive feedback on climate change considering the sensitive response of nitrogen biogeochemical cycling to the freeze-thaw disturbance.