Atmospheric precipitation is an important part of the water circle in an inland basin. Based on the analytical results of 149 precipitation samples and corresponding surface meteorological data collected at four sampling sites (Lenglong, Ningchang, Huajian and Xiying) at different elevations in the Xiying river basin on the north slope of Qilian Mountains from May to September 2017, the sub-cloud evaporation in precipitation and its controlling factors are analyzed by the Stewart model. The results show that sub-cloud evaporation led to d-excess value in precipitation decrease and d-excess variation from cloud-base to near surface (Delta d) increase with decreasing altitude. The remaining evaporation fraction of raindrop (f) decreases with decreasing altitude. The difference of underlying surface led to a difference change of f and Delta d in the Xiying sampling site. For every 1% increase in raindrop evaporation, d-excess value in precipitation decreased by about 0.99 parts per thousand. In an environment of high relative humidity and low temperature, the slope of the linear relationship between f and Delta d is less than 0.99. In contrast, in the environment of low relative humidity and high temperature, the slope is higher than 0.99. In this study, set constant raindrop diameter may affect the calculation accuracy. The Stewart model could have different parameter requirements in different study areas. This research is helpful to understand water cycle and land-atmosphere interactions in Qilian Mountains.
The altitude effect of isotopes in precipitation is not as significant on the leeward side of a mountain as it is on the windward side, which makes it difficult to use isotopes at leeward sites, especially if estimating elevation of groundwater recharge or reconstructing paleoelevations. Samples of precipitation were taken at three stations with different elevations-2,306-3,243 m above mean sea level (asl)-on the leeward side of the Meili Snow Mountains on the southeastern Tibetan Plateau from August 2017 to July 2018. The isotope vs. altitude gradients were calculated based on two adjacent stations at the daily, monthly, and annual scales. Most of the gradients are beyond the global ranges of -0.5 to -0.1 parts per thousand per 100 m for delta O-18 and -5 to -1 parts per thousand per 100 m for delta H-2, and some of the gradients are even positive. Local processes of sub-cloud evaporation and mixing with recycled moisture are identified for the ambiguous altitude effect, while regional atmospheric circulation processes dominate the major patterns of stable isotope variation at the three stations. The groundwater recharge elevation is estimated to be in a very large range, 2,562-6,321 m asl, which could be caused by the differences in isotope vs. altitude gradient in the studied catchments. Considering the complex atmospheric processes affecting precipitation isotopes, sampling of event-based/monthly precipitation at more than two altitudes for at least one complete hydrological year is a minimum requirement to establish a reasonable isotope vs. altitude gradient.