Shallow subway tunnels in both the intermediate and far fields are significantly affected by Rayleigh surface waves, which typically induce substantial vertical seismic motion and exhibit high seismic destructiveness. However, current vulnerability assessments of underground tunnels primarily focus on body waves. This study aims to identify the optimal ground motion intensity measures (IMs) for evaluating the seismic fragility of shallow circular subway tunnels subjected to Rayleigh waves. A detailed dynamic analysis of soil-tunnel interaction is performed using the two-dimensional Finite Element Method, with particular emphasis on the influence of tunnel burial depth and site classification on the tunnel's response to Rayleigh waves. The input of Rayleigh wave motion is modeled by transforming the motion into a series of equivalent forces, applied through viscoelastic boundaries. This study examines 15 widely used ground motion IMs, with diameter deformation ratio (DDR) serving as the damage measure (DM). Linear regression analysis is conducted to explore the relationship between IMs and DDR. The optimal IMs are evaluated based on criteria including efficiency, practicality, proficiency, and correlation. The results indicate that for sites classified as Class III and IV, the optimal IM is root mean square velocity (vrms), while for Class II sites, spectral mean velocity (SMV) is more suitable. Fragility curves for shallow-buried tunnels in Class II, III, and IV sites are presented. These curves demonstrate that tunnels are most vulnerable to damage in Class II sites, followed by Class IV, and least vulnerable in Class III sites. In Class II sites, shallower tunnel depths are associated with increased seismic damage, while deeper tunnels in Class III and IV sites experience greater seismic damage. The primary factor influencing seismic damage to tunnels is the vertical relative deformation of the surrounding soil layers.
The pile foundation construction adjacent to an operational subway tunnel can induce the creep effects of the surrounding soil of the tunnel, resulting in the deformation of the existing tunnel lining and potentially compromising the safe operation of the tunnel. Therefore, the Mindlin solution and the generalized Kelvin viscoelasticity constitutive model were employed to establish the theoretical calculation model for the deformation of the adjacent subway tunnel caused by the pile construction. Then, the effect of pile construction on the deformation of adjacent tunnels under different pile-tunnel spacing was analyzed via three-dimensional numerical simulation and theoretical calculation methods and compared with the field monitoring data. The results showed that the theoretical and numerical data are in agreement with the field monitoring data. The theoretical model provides closer predictions to the field-measured values than the numerical simulation. As the distance between the pile and the tunnel increases, both the vertical settlement and the horizontal displacement of the subway tunnel lining exhibit a gradual reduction. In the hard plastic clay region of Hefei City (China), pile foundation construction near an operational subway tunnel can be classified into three distinct zones based on proximity to the tunnel: the high-impact zone (3.0 D). The pile foundation in high-, moderate-, and low-impact zones should be monitored for 7 days, 3 days, and 1 day, respectively, to ensure the stable deformation of the lining.
Based on a prototype of the Beijing subway tunnel, this research conducts large-scale model experiments to systematically investigate the vibration response patterns of tunnels with different damage levels under the influence of measured train loads. Initially, the polynomial fitting modal identification method (Levy) and the model test preparation process are introduced. Then, using time-domain peak acceleration, frequency response function, frequency-domain modal frequency, and modal shape indicators, a detailed analysis of the tunnel's dynamic response is conducted. The results indicate that damage significantly amplifies vibration acceleration, with the amplification increasing with the severity of the damage. When the crack lengths are 2 cm, 4 cm, and 6 cm, the peak acceleration increases by 25.12%, 36.35%, and 50.29%, respectively, while adjacent segments show increases of 13%, 29%, and 45%. Damage decreases the tunnel structure's modal frequency, with the first two modal frequencies showing the most significant reductions of 9.87% and 7.34%, respectively. The adjacent segments show reductions of 7.7% and 4.2%. As the severity of the damage increases, the amplitude of the modal shape at the damaged location also increases, with the first modal shape rising by 43.37% for 4 cm damage compared to 2 cm damage and by 72.21% for 6 cm damage. The second modal shape increases by 9.04% and 26.51%, respectively. Additionally, the effectiveness of the polynomial fitting modal identification method (Levy) for tunnel structural damage detection was validated. Finally, based on the methods outlined above, the tunnel responses measured on-site in the Beijing metro were also analyzed. The findings of this study provide important theoretical support for the assessment and routine maintenance of metro tunnels.
In a complex urban environment, the impact of building demolitions by blasting on the structural integrity of nearby metro tunnels is critical. This study systematically analyzed the blasting and demolition process of a building adjacent to a metro tunnel using various monitoring methods, including blasting vibration, dynamic strain, deformation and settlement, pore water pressure, and displacement. The results indicate that the metro tunnel's vibration response can be divided into four stages: notch blasting, notch closure, overall collapse impact, and auxiliary notch blasting. The most significant impact on the tunnel segments occurred during the building's ground impact phase, with a peak particle velocity of 0.57 cm/s. The maximum tensile and compressive stresses induced in the tunnel segments did not exceed 0.4 MPa, well within the safety limits. Displacement and settlement changes in the tunnel structure were less than 1 mm, far below the warning threshold. Additionally, blasting vibrations significantly affected the pore water pressure in the surrounding soil. However, fluctuations caused by ground impact vibrations were minimal, and the pore water pressure quickly returned to its initial level after the blasting concluded. Throughout the process, no adverse effects on the metro tunnel structure were observed.