共检索到 2

The timing and extent of the last glaciation in the Altai Mountains are key to understanding climate change in this critical region. However, robust glacial chronologies are sparse across the Altai Mountains, especially in the Chinese Altai, impeding the correlation of glacial events and examination of the possible climate forcing mechanisms. Here, we report twenty new Be-10 exposure-ages obtained from two moraines in the headwater area of the Xiaokelanhe River, Chinese Altai. The inner latero-frontal moraine yields exposure-ages ranging from 16.60 +/- 1.00 to 20.41 +/- 1.15 ka (n = 5), reflecting a limited advance during the global Last Glacial Maximum (LGM). The morpho-stratigraphically older moraine remnants have exposure-ages of 14.36 +/- 0.94-38.98 +/- 2.23 ka (n = 15). The tentatively determined moraine age of 34.10 +/- 4.99 ka suggests that the local LGM in the Xiaokelanhe River likely occurred during Marine Isotope Stage (MIS) 3 or earlier. From a compilation of the 20 new, and 79 previously published exposure-ages, we observe at least three distinct glacial events during the last glacial, with the local LGM occurring prior to MIS 2. A comparison between the timing of glacial activities and climate proxies suggests a potential combination of summer solar insolation, North Atlantic climate oscillations, and atmospheric CO2 levels, as triggers for glacial movements during the last glacial cycle. Precipitation delivered by the mid-latitude westerlies may have also contributed to glacial advances during MIS 3. These correlations remain tentative however, due to limited chronological control.

期刊论文 2023-01-01 DOI: http://dx.doi.org/10.1016/j.quageo.2020.101054 ISSN: 1871-1014

The timing of neoglacial advances in the Antarctic Peninsula (AP) is not yet well constrained. Accurate temporal reconstruction of Neoglaciation in the AP is needed to better understand past glacial responses and regional and global teleconnections during the Holocene. Here, we examine all available information about neoglacial advances in the South Shetland Islands (SSI) as well as in the broader geographical context of the AP region and Antarctic continent. In order to shed light on the contrasting chronologies existing for neoglacial advances in these regions, we focused on a case study where a detailed picture of the Holocene deglaciation was already available. Lake sediments revealed that Byers Peninsula, west of Livingston Island (SSI), was fully deglaciated during the Holocene Thermal Maximum. To complement this approach, we identified glacially polished bedrock surfaces, erratic boulders and a moraine ridge near the present front of the glacier in the SE corner. We applied cosmogenic ray exposure (CRE) dating using in situ Cl-36 for basalt rocks and Be-10 for granitic rocks in: (i) 8 samples from glacial erratic and ice-rafted boulders, (ii) 2 samples from moraine boulders, (iii) 2 samples from polished bedrock surfaces, and (iv) 1 sample from an erratic boulder deposited on one of these surfaces. The CRE dates indicate that the onset of deglaciation started around 9.9 +/- 1.2 ka, with two phases of glacier expansion during the Mid-Late Holocene forming moraines at similar to 4.1 +/- 0.5 and similar to 1.0 +/- 0.2 ka, respectively. The main neoglacial advances in the AP and the SSI were mostly synchronous and coincided with cold periods, as shown by other records (e.g. glacio-isostatic marine terraces, marine and lake sediments). In addition, these periods of glacial expansion show a similar timing to those recorded in the Arctic. These results suggest that Neoglaciation was driven by global climate forcing in both polar areas despite temporal variations at regional and local scale. (C) 2020 Elsevier Ltd. All rights reserved.

期刊论文 2020-04-15 DOI: 10.1016/j.quascirev.2020.106248 ISSN: 0277-3791
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页