共检索到 2

Upper Brahmaputra (UB) is the largest (similar to 240,000 km(2)) river basin of the Tibetan Plateau, where hydrological processes are highly sensitive to climate change. However, constrained by difficult access and sparse in situ observations, the variations in precipitation, glaciers, frozen ground, and vegetation across the UB basin remain largely unknown, and consequently the impacts of climate change on streamflow cannot be accurately assessed. To fill this gap, this project aims to establish a basinwide, large-scale observational network (that includes hydrometeorology, glacier, frozen ground, and vegetation observations), which helps quantify the UB runoff processes under climate-cryosphere-vegetation changes. At present, a multisphere observational network has been established throughout the catchment: 1) 12 stations with custom-built weighing automatic rain/snow meters and temperature probes to obtain elevation-dependent gradients; 2) 9 stations with soil moisture/temperature observations at four layers (10, 40, 80, 120 cm) covering Alpine meadow, grasslands, shrub, and forest to measure vegetation (biomass and vegetation types) and soil (physical properties) simultaneously; 3) 34 sets of probes to monitor frozen ground temperatures from 4,500 to 5,200 m elevation (100-m intervals), and two observation systems to monitor water and heat transfer processes in frozen ground at Xuegela (5,278 m) and Mayoumula (5,256 m) Mountains, for improved mapping of permafrost and active layer characteristics; 4) 5 sets of altimetry discharge observations along ungauged cross sections to supplement existing operational gauges; 5) high-precision glacier boundary and ice-surface elevation observations at Namunani Mountain with differential GPS, to supplement existing glacier observations for validating satellite imagery. This network provides an excellent opportunity to monitor UB catchment processes in great detail.

期刊论文 2022-06-01 DOI: 10.1175/BAMS-D-21-0217.1 ISSN: 0003-0007

Monitoring changes in river runoff at the Third Pole (TP) is important because rivers in this region support millions of inhabitants in Asia and are very sensitive to climate change. Under the influence of climate change and intensified cryospheric melt, river runoff has changed markedly at the TP, with significant effects on the spatial and temporal water resource distribution that threaten water supply and food security for people living downstream. Despite some in situ observations and discharge estimates from state-of-the-art remote sensing technology, the total river runoff (TRR) for the TP has never been reliably quantified, and its response to climate change remains unclear. As part of the Chinese Academy of Sciences' Pan-Third Pole Environment Study for a Green Silk Road, the TP-River project aims to construct a comprehensive runoff observation network at mountain outlets (where rivers leave the mountains and enter the plains) for 13 major rivers in the TP region, thereby enabling TRR to be accurately quantified. The project also integrates discharge estimates from remote sensing and cryosphere-hydrology modeling to investigate long-term changes in TRR and the relationship between the TRR variations and westerly/monsoon. Based on recent efforts, the project provides the first estimate (656 +/- 23 billion m(3)) of annual TRR for the 13 TP rivers in 2018. The annual river runoff at the mountain outlets varies widely between the different TP rivers, ranging from 2 to 176 billion m(3), with higher values mainly corresponding to rivers in the Indian monsoon domain, rather than in the westerly domain.

期刊论文 2021-05-01 DOI: 10.1175/BAMS-D-20-0207.1 ISSN: 0003-0007
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页