Influenced by a warm and humid climate, the permafrost on the Qinghai-Tibet Plateau is undergoing significant degradation, leading to the occurrence of extensive thermokarst landforms. Among the most typical landforms in permafrost areas is thaw slump. This study, based on three periods of data from keyhole images of 1968-1970, the fractional images of 2006-2009 and the Gaofen (GF) images of 2018-2019, combined with field surveys for validation, investigates the distribution characteristics and spatiotemporal variation trends of thaw slumps in the Hoh Xil area and evaluates the susceptibility to thaw slumping in this area. The results from 1968 to 2019 indicate a threefold increase in the number and a twofold increase in total area of thaw slumps. Approximately 70% of the thaw slumps had areas less than 2 x 104 m2. When divided into a grid of 3 km x 3 km, about 1.3% (128 grids) of the Hoh Xil region experienced thaw slumping from 1968 to 1970, while 4.4% (420 grids) showed such occurrences from 2018 to 2019. According to the simulation results obtained using the informativeness method, the area classified as very highly susceptible to thaw slumping covers approximately 26% of the Hoh Xil area, while the highly susceptible area covers about 36%. In the Hoh Xil, 61% of the thaw slump areas had an annual warming rate ranging from 0.18 to 0.25 degrees C/10a, with 70% of the thaw slump areas experiencing a precipitation increase rate exceeding 12 mm/10a. Future assessments of thaw slump development suggest a possible minimum of 41 and a maximum of 405 thaw slumps occurrences annually in the Hoh Xil region. Under rapidly changing climatic conditions, apart from environmental risks, there also exist substantial potential risks associated with thaw slumping, such as the triggering of large-scale landslides and debris flows. Therefore, it is imperative to conduct simulated assessments of thaw slumping throughout the entire plateau to address regional risks in the future.
In the context of global warming, landscapes with ice-rich permafrost, such as the Qinghai-Tibet Plateau (QTP), are highly vulnerable. The expansion of thermokarst lakes erodes the surrounding land, leading to collapses of various scales and posing a threat to nearby infrastructure and the environment. Assessing the susceptibility of thermokarst lakes in remote, data-scarce areas remains a challenging task. In this study, Landsat imagery and human-computer interaction were employed to improve the accuracy of thermokarst lake classification. The study also identified the key factors influencing the occurrence of thermokarst lakes, including the lake density, soil moisture (SM), slope, vegetation, snow cover, ground temperature, precipitation, and permafrost stability (PS). The results indicate that the most susceptible areas cover 19.02% of the QTP's permafrost region, primarily located in southwestern Qinghai, northeastern Tibet, and the Hoh Xil region. This study provides a framework for mapping the spatial distribution of thermokarst lakes and contributes to understanding the impact of climate change on the QTP.
Classifying a given landscape on the basis of its susceptibility to surface processes is a standard procedure in low to mid-latitudes. Conversely, these procedures have hardly been explored in periglacial regions. However, global warming is radically changing this situation and will change it even more in the future. For this reason, un-derstanding the spatial and temporal dynamics of geomorphological processes in peri-arctic environments can be crucial to make informed decisions in such unstable environments and shed light on what changes may follow at lower latitudes. For this reason, here we explored the use of data-driven models capable of recognizing locations prone to develop retrogressive thaw slumps (RTSs) and/or active layer detachments (ALDs). These are cryo-spheric hazards induced by permafrost degradation, and their development can negatively affect human set-tlements or infrastructure, change the sediment budget and release greenhouse gases. Specifically, we test a binomial Generalized Additive Modeling structure to estimate the probability of RST and ALD occurrences in the North sector of the Alaskan territory. The results we obtain show that our binary classifiers can accurately recognize locations prone to RTS and ALD, in a number of goodness-of-fit (AUCRTS = 0.83; AUCALD = 0.86), random cross-validation (mean AUCRTS = 0.82; mean AUCALD = 0.86), and spatial cross-validation (mean AUCRTS = 0.74; mean AUCALD = 0.80) routines. Overall, our analytical protocol has been implemented to build an open-source tool scripted in Python where all the operational steps are automatized for anyone to replicate the same experiment. Our protocol allows one to access cloud-stored information, pre-process it, and download it locally to be integrated for spatial predictive purposes.