降水是地表及地下水资源的根本补给源,直接影响水资源的时空分布格局以及山地冰冻圈的分布和发育。祁连山高寒山区是降水和产流高值区,降水特征受地形影响较大,但现有的降水观测网络还无法合理反映降水特征在地形垂直梯度上的变化。为了确定降水变化如何影响高寒山区的水文和生态过程,需要从流域垂直梯度观测降水形态和降水量的变化。本文概述了由T-200BM3组成的祁连山高山区降水格网化、梯度化、自动化观测网络,并在八一冰川冰缘区建立高寒山区降水标准校正场,采用世界气象组织(WMO)推荐的降水/降雪观测标准(DFIR)校正八一冰川区域降水量。在八一冰川区域对地面降水数据产品作初步分析,并利用高海拔站点数据评估了GPM和TRMM降水数据产品在祁连山区的适用性。该降水观测网络的建设对进一步认识高寒山区不同海拔雨雪和水汽变化规律,精细化评估高寒山区降水资源具有重要意义,并可为全国的降水资源综合观测和评估提供方法和降水数据产品。
降水是地表及地下水资源的根本补给源,直接影响水资源的时空分布格局以及山地冰冻圈的分布和发育。祁连山高寒山区是降水和产流高值区,降水特征受地形影响较大,但现有的降水观测网络还无法合理反映降水特征在地形垂直梯度上的变化。为了确定降水变化如何影响高寒山区的水文和生态过程,需要从流域垂直梯度观测降水形态和降水量的变化。本文概述了由T-200BM3组成的祁连山高山区降水格网化、梯度化、自动化观测网络,并在八一冰川冰缘区建立高寒山区降水标准校正场,采用世界气象组织(WMO)推荐的降水/降雪观测标准(DFIR)校正八一冰川区域降水量。在八一冰川区域对地面降水数据产品作初步分析,并利用高海拔站点数据评估了GPM和TRMM降水数据产品在祁连山区的适用性。该降水观测网络的建设对进一步认识高寒山区不同海拔雨雪和水汽变化规律,精细化评估高寒山区降水资源具有重要意义,并可为全国的降水资源综合观测和评估提供方法和降水数据产品。
Based on their interaction with solar radiations, aerosols may be categorized as absorbing or scattering in nature. The absorbing aerosols are coarser and influence precipitation mainly due to microphysical effect (participating in the formation of Cloud Condensation Nuclei) and radiative forcing (by absorbing electromagnetic radiations). The prominent absorbing aerosols found in India are Black Carbon, soil dust, sand and mineral dust. Their size, distribution, and characteristics vary spatially and temporally. This paper aims at showing the spatio-temporal variation of Absorbing Aerosol Index (AAI) and precipitation over the four most polluted zones of Indian sub-continent (Indo-Gangetic plains 1, Indo-Gangetic plains 2, Central and Southern India) for monsoon season (June, July, August, September) during the last decade (2005 to 2014). Zonal averages AAI have been found to be exhibiting an increasing trend, hence region-wise correlations have been computed between AAI and precipitation during monsoon. Daily Absorption Aerosol Index (AAI) obtained from Aura OMI Aerosol Global Gridded Data Product-OMAEROe (V003) and monthly precipitation from TRMM 3B42-V7 gridded data have been used