Deformation and failure of the talus slope in the cold region significantly threaten engineered structures. Its driving mechanism of the deformation process is the most challenging issue. In this study, we try to explore these issues using tree ring characteristics. Fifty samples from 21 trees of Pinus densiflora growing on the talus slope in the Huanren area of Northeast China are tested to investigate the characteristics of tree rings and their relation to climate change. The deformation and its driving mechanism of this talus slope are then studied by combining the analysis of tree-ring width and mutation identification with the local meteorological data. The results present that the studied talus slope in Huanren has deformed to varying degrees at least 60 times since 1900. It is reasonable to speculate that the deformation mode of this slope is probably of a long-term and slow type. The local precipitation and seasonal temperature difference are the vital inducing factors of the mutation of tree-ring width and slope deformation. Repeated freezing and thawing are believed to be the driving factors of this talus slope in the cold region. A theoretical model is proposed to capture and predict the deformation of the talus slope. This work presents a new perspective and insight to reveal the deformation and its driving mechanism of similar talus slopes in the cold region. It is of great significance to practical engineering treatment and disaster prevention for this kind of cold region environment.
Air and near-surface ground temperatures were measured using dataloggers over 14 years (2006-2020) in 10 locations at 2262 to 2471 m.a.s.l. in a glacial cirque of the Cantabrian Mountains. These sites exhibit relevant differences in terms of substrate, solar radiation, orientation, and geomorphology. Basal temperature of snow (BTS) measurements and electrical resistivity tomography of the talus slope were also performed. The mean annual near-surface ground temperatures ranged from 5.1 degrees C on the sunny slope to 0.2 degrees C in the rock glacier furrow, while the mean annual air temperature was 2.5 degrees C. Snow cover was inferred from near-surface ground temperature (GST) data, estimating between 130 and 275 days per year and 0.5 to 7.1 m snow thickness. Temperature and BTS data show that the lowest part of the talus slope and the rock glacier furrow are the coldest places in this cirque, coinciding with a more persistent and thickest snow cover. The highest temperatures coincide with less snow cover, fine-grained soils, and higher solar radiation. Snow cover has a primary role in controlling GST, as the delayed appearance in autumn or delayed disappearance in spring have a cooling effect, but no correlation with mean annual near-surface ground temperatures exists. Heavy rain-over-snow events have an important influence on the GST. In the talus slope, air circulation during the snow-covered period produces a cooling effect in the lower part, especially during the summer. Significant inter-annual GST differences were observed that exhibited BTS limitations. A slight positive temperature trend was detected but without statistically significance and less prominent than nearby reference official meteorological stations, so topoclimatic conditions reduced the more global positive temperature trend. Probable existence of permafrost in the rock glacier furrow and the lowest part of the talus slope is claimed; however, future work is necessary to confirm this aspect.