共检索到 4

Deformation and failure of the talus slope in the cold region significantly threaten engineered structures. Its driving mechanism of the deformation process is the most challenging issue. In this study, we try to explore these issues using tree ring characteristics. Fifty samples from 21 trees of Pinus densiflora growing on the talus slope in the Huanren area of Northeast China are tested to investigate the characteristics of tree rings and their relation to climate change. The deformation and its driving mechanism of this talus slope are then studied by combining the analysis of tree-ring width and mutation identification with the local meteorological data. The results present that the studied talus slope in Huanren has deformed to varying degrees at least 60 times since 1900. It is reasonable to speculate that the deformation mode of this slope is probably of a long-term and slow type. The local precipitation and seasonal temperature difference are the vital inducing factors of the mutation of tree-ring width and slope deformation. Repeated freezing and thawing are believed to be the driving factors of this talus slope in the cold region. A theoretical model is proposed to capture and predict the deformation of the talus slope. This work presents a new perspective and insight to reveal the deformation and its driving mechanism of similar talus slopes in the cold region. It is of great significance to practical engineering treatment and disaster prevention for this kind of cold region environment.

期刊论文 2024-07-01 DOI: 10.1007/s10346-024-02240-w ISSN: 1612-510X

We investigate the Gisla perched talus slope (Trollaskagi peninsula, northern Iceland), from which a landslide (more specifically a debris avalanche) occurred in October 2020. Although this talus slope is located outside of the permafrost climatic boundaries, geomorphological evidence (i.e., molards in the landslide deposits) suggest that degradation of azonal permafrost could be among the destabilising factors of the landslide. The thermal dynamics of talus slopes is currently poorly understood, as air convection ( the 'chimney effect') can play a role in the persistence of permafrost at the base of talus slopes. We use the software FEFLOW to run physical-based simulations of heat transfer within a cross- of the Gisla talus slope, from -20,000 years to present. We explore the sensitivity of our model to document the initial porosity/ ice content of the talus slope (0.3, 0.5 and 0.8), and the thermal conductivity (TC) of the rock phase (0.75, 1.1 and 1.75 W.m(-1).K-1). Analysis of air temperature data show that the region has been undergoing a general temperature increase for the last similar to 40 years, supporting the possibility that permafrost degradation is among the destabilising factors of the landslide. Our temperature measurements show that a chimney effect indeed occurs at the Gisla talus slope. Although our modelling approach does not simulate air convection itself, permafrost persists at the base of the talus slope in all model scenarios. Increasing the initial porosity/ice content and decreasing the TC of the rock phase enhances persistence of permafrost in the Gisla talus slope. Our approach is unconventional as we initially know that ground ice was present in the Gisla talus slope at the time of the landslide; it attests that the permafrost dynamics in the talus slope is best represented by our most ice-conservative scenario - i.e., with a TC of 0.75 W.m(-1).K-1.

期刊论文 2024-07-01 DOI: 10.4000/134ad ISSN: 1266-5304

A growing rock engineering activity in cold regions is facing the threat of freeze-thaw (FT) weathering, especially in high mountains where the sunny-shady slope effects strongly control the difference in weathering behavior of rocks. In this paper, an investigation of the degradation of petrophysical characteristics of sandstone specimens subjected to FT cycle tests to simulate the sunny-shady slope effects is presented. To this aim, non-destructive and repeatable testing techniques including weight, ultrasonic waves, and nuclear magnetic resonance methods on standard specimens were performed. For the sunny slope specimens, accompanied by the enlargement of small pores, 100 FT cycles caused a significant decrease in P-wave velocity with an average of 23%, but a consistent rise of 0.18% in mass loss, 34% in porosity, 67% in pore geometrical mean radius, and a remarkable 14.5-fold increase in permeability. However, slight changes with some abnormal trends in physical parameters of the shady slope specimens were observed during FT cycling, which can be attributed to superficial granular disaggregation and pore throat obstruction. Thermal shocks enhance rock weathering on sunny slopes during FT cycles, while FT weathering on shady slopes is restricted to the small pores and the superficial cover. These two factors are primarily responsible for the differences in FT weathering intensity between sunny and shady slopes. The conclusions derived from the interpretation of the experimental results may provide theoretical guidance for the design of slope-failure prevention measures and the selection of transportation routes in cold mountainous regions. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

期刊论文 2024-07-01 DOI: 10.1016/j.jrmge.2023.12.023 ISSN: 1674-7755

Air and near-surface ground temperatures were measured using dataloggers over 14 years (2006-2020) in 10 locations at 2262 to 2471 m.a.s.l. in a glacial cirque of the Cantabrian Mountains. These sites exhibit relevant differences in terms of substrate, solar radiation, orientation, and geomorphology. Basal temperature of snow (BTS) measurements and electrical resistivity tomography of the talus slope were also performed. The mean annual near-surface ground temperatures ranged from 5.1 degrees C on the sunny slope to 0.2 degrees C in the rock glacier furrow, while the mean annual air temperature was 2.5 degrees C. Snow cover was inferred from near-surface ground temperature (GST) data, estimating between 130 and 275 days per year and 0.5 to 7.1 m snow thickness. Temperature and BTS data show that the lowest part of the talus slope and the rock glacier furrow are the coldest places in this cirque, coinciding with a more persistent and thickest snow cover. The highest temperatures coincide with less snow cover, fine-grained soils, and higher solar radiation. Snow cover has a primary role in controlling GST, as the delayed appearance in autumn or delayed disappearance in spring have a cooling effect, but no correlation with mean annual near-surface ground temperatures exists. Heavy rain-over-snow events have an important influence on the GST. In the talus slope, air circulation during the snow-covered period produces a cooling effect in the lower part, especially during the summer. Significant inter-annual GST differences were observed that exhibited BTS limitations. A slight positive temperature trend was detected but without statistically significance and less prominent than nearby reference official meteorological stations, so topoclimatic conditions reduced the more global positive temperature trend. Probable existence of permafrost in the rock glacier furrow and the lowest part of the talus slope is claimed; however, future work is necessary to confirm this aspect.

期刊论文 2022-05-01 DOI: 10.1016/j.catena.2022.106110 ISSN: 0341-8162
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页