To investigate the effect of interface temperature on the soil-reinforcement interaction mechanism, a series of pullout tests were conducted considering different types of reinforcement (geogrid and non-woven geotextile), backfill (dry sand, wet sand, and clay), and six interface temperatures. The test results indicate that at interface temperatures of 0 degrees C and above, reinforcement failure didn't occur during the pullout tests, whereas it predominantly occurred at subzero temperatures. Besides, the pullout resistance for the same soil-reinforcement interface gradually decreased as the interface temperature rose. At a given positive interface temperature, the pullout resistance between wet sand and reinforcement was significantly higher than that of the clayreinforcement interface but lower than that of the dry sand-reinforcement interface. Compared with geotextile reinforcements, geogrids were more difficult to pull out under the same interface temperature and backfill conditions. In addition, the lag effect in the transfer of tensile forces within the reinforcements was significantly influenced by the type of soil-reinforcement interface and the interface temperature. Finally, the progressive deformation mechanism along the reinforcement length at different interface temperatures was analyzed based on the strain distribution in the reinforcement.
Land surface temperature (LST) plays an important role in Earth energy balance and water/carbon cycle processes and is recognized as an Essential Climate Variable (ECV) and an Essential Agricultural Variable (EAV). LST products that are issued from satellite observations mostly depict landscape-scale temperature due to their generally large footprint. This means that a pixel-based temperature integrates over various components, whereas temperature individual components are better suited for the purpose of evapotranspiration estimation, crop growth assessment, drought monitoring, etc. Thus, disentangling soil and vegetation temperatures is a real matter of concern. Moreover, most satellite-based LSTs are contaminated by directional effects due to the inherent anisotropy properties of most terrestrial targets. The characteristics of directional effects are closely linked to the properties of the target and controlled by the view and solar geometry. A singular angular signature is obtained in the hotspot geometry, i.e., when the sun, the satellite and the target are aligned. The hotspot phenomenon highlights the temperature differences between sunlit and shaded areas. However, due to the lack of adequate multi-angle observations and inaccurate portrayal or neglect of solar influence, the hotspot effect is often overlooked and has become a barrier for better inversion results at satellite scale. Therefore, hotspot effect needs to be better characterized, which here is achieved with a three-component model that distinguishes vegetation, sunlit and shaded soil temperature components and accounts for vegetation structure. Our work combines thermal infrared (TIR) observations from the Sea and Land Surface Temperature Radiometer (SLSTR) onboard the LEO (Low Earth Orbit) Sentinel-3, and two sensors onboard GEO (geostationary) satellites, i.e. the Advanced Himawari Imager (AHI) and Spinning Enhanced Visible and Infrared Imager (SEVIRI). Based on inversion with a Bayesian method and prior information associated with component temperature differences as constrained, the findings include: 1) Satellite observations throughout East Asia around noon indicate that for every 10 degrees change in angular distance from the sun, LST will on average vary by 0.6 K; 2) As a better constraint, the hotspot effect can benefit from multi-angle TIR observations to improve the retrieval of LST components, thereby reducing the root mean squared error (RMSE) from approximately 3.5 K, 5.8 K, and 4.1 K to 2.8 K, 3.5 K, and 3.1 K, at DM, EVO and KAL sites, respectively; 3) Based on a dataset simulated with a threedimensional radiative transfer model, a significant inversion error may result if the hotspot is ignored for an angular distance between the viewing and solar directions that is smaller than 30 degrees. Overall, considering the hotspot effect has the potential to reduce inversion noise and to separate the temperature difference between sunlit and shaded areas in a pixel, paving the way for producing stable temperature component products.
The Land Surface Temperature (LST) is well suited to monitor biosphere-atmosphere interactions in forests, as it depends on water availability and atmospheric/meteorological conditions above and below the canopy. Satellite-based LST has proven integral in observing evapotranspiration, estimating surface heat fluxes and characterising vegetation properties. Since the radiative regime of forests is complex, driven by canopy structure, components radiation properties and their arrangement, forest radiative temperatures are subject to strong angular effects. However, this depends on the scale of observation, where scattering mechanisms from canopy-to satellite-scales influence anisotropy with varying orders of magnitude. Given the heterogeneous and complex nature of forests, multi-angular data collection is particularly difficult, necessitating instrumentation distant enough from the canopy to obtain significant canopy brightness temperature and concurrent observations to exclude turbulence/atmospheric effects. Accordingly, current research and understanding on forest anisotropy at varying scales (from local validation level to satellite footprint) remain insufficient to provide practical solutions for addressing angular effects for upcoming thermal satellite sensors and associated validation schemes. This study presents a novel method founded in the optical remote sensing domain to explore the use of microcanopies that represent forests at different scales in the footprint of a multi-angular goniometer observing system. Both Geometric Optical (GO) and volumetric scattering dominated canopies are constructed to simulate impacts of anisotropy in heterogeneous and homogeneous canopies, and observed using a thermal infrared radiometer. Results show that heterogeneous canopies dominated by GO scattering are subject to much higher magnitudes of anisotropy, reaching maximum temperature differences of 3 degrees C off-nadir. Magnitudes of anisotropy are higher in sparse forests, where the gap fraction and crown arrangement (inducing sunlit/shaded portions of soil and vegetation) drive larger off-nadir differences. In dense forests, anisotropy is driven by viewing the maximum portion of sunlit vegetation (hotspot), where the soil is mostly obscured. Canopy structural metrics such as the fractional cover and gap fraction were found to have significant correlation with off-nadir differences. In more homogeneous canopies, anisotropy reaches a lower magnitude with temperature differences up to 1 degrees C, driven largely by volumetric scattering and components radiation properties. Optimal placement of instrumentation at the canopy-scale (more heterogeneous behaviour due to proximity to the canopy and small pixel size) used to validate satellite observations (more homogeneous behaviour due to larger pixel size) was found to be in cases of viewing maximum sunlit vegetation, for dense canopies. Given upcoming high spatial resolution sensors and associated validation schemes needed to benchmark LST and downstream products such as evapotranspiration, a better understanding of anisotropy over forests is critical to provide accurate, long-term and multi-sensor products.
Satellite-derived land surface temperature (LST) is a directional variable and has significant angular anisotropy. This characteristic contributes to enhance the differences among different satellite-derived LST products, and therefore increases the challenge of using multi-sensor and multi-decadal data to provide a long-term and angleconsistent LST climate data record. The kernel-driven model can balance the interpretability and operability well, so that it is suitable for angular normalization of LST products. The calibration of the kernel-driven model depends on multi-angle data which is difficult to obtain due to the spatial-temporal heterogeneity of LST. In this study, a novel LST angular normalization method based on the kernel-driven model was proposed to correct the angular effect of satellite-derived LST product by constructing multi-angle LST dataset from one geostationary satellite (GOES-R/ABI) and four polar-orbiting satellites (Terra/MODIS, Aqua/MODIS, Metop/AVHRR, and SNPP/VIIRS). The dataset gathered more abundant angle information, i.e., LSTs from three different observation geometries for the same pixel. The kernel-driven model was calibrated using the multi-angle LST dataset in the Continental United States (CONUS) during the year 2020. The discrepancies of the root mean square difference between LST before and after angular normalization range from 0.14 K to 1.10 K over nine land cover types in the four seasons. Similar results are obtained when the calibrated kernel-driven model was further expanded to other years and areas (i.e., the CONUS in 2021 and East Asia in 2020). The LST angular normalization method was applied to correct the angular effect of MODIS LST product. The results indicate that there is a strong correlation between the spatial distribution of LST differences (LST before and after angular normalization) and view zenith angle (VZA). MODIS LSTs before and after angular normalization were compared with Landsat 8 LST and Sentinel-3 A LST in near-nadir viewing for January, April, July, and October 2020. The angular normalization reduced the root mean square error (RMSE) between MODIS LST and Landsat 8 LST by 0.94-2.06 K in different months and by 0.13-2.61 K over various land cover types. For Sentinel-3 A, the RMSE decreased by 0.30-0.64 K in different months. The accuracies of MODIS LST before and after angular normalization were further validated using in situ measurements at the six SURFRAD sites. There are large discrepancies between the RMSE of MODIS LST before and after angular normalization versus in situ LST for VZA >= 45 degrees. The largest discrepancy is up to approximately 1.3 K at the GWN site. The LST angular normalization method has the potential to provide an angle-consistent LST climate data record.
In this study, impact compression tests on low-temperature concrete were conducted using a split Hopkinson pressure bar. The impacts of low temperatures on the strength, fractal, and energy characteristics of concrete were analyzed. The damage evolution mechanism of the microcrack density was discussed based on microscopic damage theory and microscopic tests. The results demonstrated that the impact fractal dimension and energy dissipation density of low-temperature concrete were positively correlated with the strain rate. The strain rate sensitivity of the impact fractal dimension was significantly affected by low temperature at low strain rates; however, low temperature had little effect at high strain rates. The pore water transformed into ice at negative temperatures, the fracture energy of the concrete increased, and the energy dissipation density increased. More than 50 % of the capillary and free water inside the concrete was frozen at -10 degrees C; approximately 30 % of the capillary and free water and 65 % of bound water did not freeze when the temperature was -30 degrees C. The macropores did not collapse under the action of ice filling at high strain rates; however, microcracks were generated around them. With a decreasing temperature, the threshold stress for microcrack propagation increased, crack propagation required more energy, and the microcrack density decreased.
This study investigates the strain-rate-dependent mechanical properties of unsaturated red clay under varying temperatures and matric suction conditions through triaxial shear tests on red clay fill materials from the Sichuan-Tibet Railway region. The tests were conducted with multiple shear strain rates, complemented by advanced microstructural analysis techniques such as mercury intrusion porosimetry (MIP), nuclear magnetic resonance (NMR), and scanning electron microscopy (SEM), to examine the evolution of pore structure. The results indicate that high matric suction significantly reduces the rate-dependency of strength in red clay fill materials, whereas temperature has a relatively smaller effect. As matric suction increases, the strain-rate parameter decreases across different temperatures, with a diminishing rate effect observed at higher suction levels. Compared to temperature, strain rate has a more pronounced influence on failure time. An increase in strain rate leads to a significant reduction in failure time. At low strain rates, failure time exhibits substantial variability, while at high strain rates, the effects of temperature and matric suction on failure time become less significant. Under high-temperature conditions, the strength of red clay is enhanced, and failure time is delayed. These findings provide critical theoretical support for controlling settlement deformation and predicting failure times of subgrade fill materials under complex climatic conditions, offering valuable insights for engineering applications.
Foundation soil treatment is a common method used to enhance soil strength in civil engineering, particularly in cold regions where ambient temperatures significantly affect soil mechanical properties. This study investigates the utilization of cement and municipal solid waste incinerator bottom ash (MSWIBA) for stabilizing silty clay under low-temperature curing conditions. Some experiments were performed to investigate the mechanical properties of cement-stabilized silty clay, varying the dosage of bottom ash (BA) and different curing temperatures. The influences of BA dosage, curing temperature and age on the shear and compressive strengths of soils were tested and analyzed. Results demonstrated that the shear strength was influenced by the comprehensive interactions among BA particles, soil particles, and ice crystals. Regardless of curing temperature and age, the shear strength of soil specimen firstly increased and then declined with BA dosage raised, with an optimal BA content range from 20 % to 30 %. Specifically, the 28-d shear strength enhancements of 2.46 %, 15.52 %, 20.20 %, and 11.33 % were observed with each successive 10 % BA addition for soil samples at 10 degrees C curing condition. Curing temperature significantly influenced shear strength, with higher temperatures promoting greater strength due to increased hydration reaction rates. Besides, the cohesion and internal friction angle of samples increased with BA dosage. Furthermore, the axial stress-strain curves illustrated a three-stage process, i.e., initial pore compression, plastic deformation, and decay stages. The compressive strength raised with both the BA dosage and curing age, with positive curing temperatures yielding higher strengths compared to sub-zero temperatures. This study elucidates the complicated mechanical behavior of BA-cement stabilizing silty clay, providing valuable insights into their performance under different curing conditions, and offering an innovative approach for foundation engineering applications in cold regions.
Component temperature and emissivity are crucial for understanding plant physiology and urban thermal dynamics. However, existing thermal infrared unmixing methods face challenges in simultaneous retrieval and multicomponent analysis. We propose Thermal Remote sensing Unmixing for Subpixel Temperature and emissivity with the Discrete Anisotropic Radiative Transfer model (TRUST-DART), a gradient-based multi-pixel physical method that simultaneously separates component temperature and emissivity from non-isothermal mixed pixels over urban areas. TRUST-DART utilizes the DART model and requires inputs including at-surface radiance imagery, downwelling sky irradiance, a 3D mock-up with component classification, and standard DART parameters (e.g., spatial resolution and skylight ratio). This method produces maps of component emissivity and temperature. The accuracy of TRUST-DART is evaluated using both vegetation and urban scenes, employing Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images and DART-simulated pseudo-ASTER images. Results show a residual radiance error is approximately 0.05 W/(m2 & sdot;sr). In absence of the co-registration and sensor noise errors, the median residual error of emissivity is approximately 0.02, and the median residual error of temperature is within 1 K. This novel approach significantly advances our ability to analyze thermal properties of urban areas, offering potential breakthroughs in urban environmental monitoring and planning. The source code of TRUSTDART is distributed together with DART (https://dart.omp.eu).
Heliotropium L. genus belongs to the Boraginaceae family and is represented by approximately 250 species found in the temperate warm regions of the world, and there are 15 species of these species recorded in Turkiye. Heliotropium hirsutissimum Grauer grows in Bulgaria, Greece, N. Africa, Syria, and Turkiye. There is no record showing that H. hirsutissimum is a heat-tolerant plant. However, in our field studies, it was observed that H. hirsutissimum, which is also distributed in Hisaralan Thermal Springs of Sindirgi-Balikesir, Turkiye, grows in the thermal area with extremely high soil temperature (57.6 degrees C (similar to 60 degrees C)). It was thought that it would be useful to investigate the tolerance mechanism of the H. hirsutissimum plant to extremely high temperatures. For this purpose, the plant seeds were obtained from a geothermal area in the thermal spring. Growing plants were exposed to 20, 40, 60, and 80 +/- 5 degrees C soil temperature gradually for 15 days under laboratory conditions. We measured the effect of high soil temperature on some morphological changes, relative water content, thiobarbituric acid reactive substances, cell membrane stability, and hydrogen peroxide analysis to determine stress levels on leaves and roots. Changes in osmolyte compounds, some antioxidant enzyme activities, ascorbate content, and chlorophyll fluorescence and photosynthetic gas exchange parameters were also determined. As a result of the study carried out to determine the stress level, it was observed that there was not much change and it was understood that the plant was tolerant to high soil temperature. In addition, there was a general increase in osmolytes accumulation, antioxidant enzyme activities, and ascorbate level. There was no significant difference in photosynthetic gas exchange and chlorophyll fluorescence parameters of plants grown at different soil temperatures. The high temperature did not negatively impact the photosynthetic yield of H. hirsutissimum because this plant was found to enhance its antioxidant capacity. The increase in antioxidant activity helped reduce oxidative damage and protect the photosynthetic mechanism under high temperature conditions, while the significant increase in the osmolyte level helped maintain the water status and cell membrane integrity of plants, thus enabling them to effectively withstand high soil temperatures.
True triaxial tests were conducted on artificially frozen sand. The effects of the intermediate principal stress coefficient, temperature and confining pressure on the strength of frozen sand were studied. The stress-strain curves under different initial conditions indicated a strain hardening. In response to increases of either the intermediate principal stress coefficient or the confining pressure or to a decrease of temperature, the strength typically increased. Furthermore, a new strength criterion was proposed to describe the strength of artificially frozen sand under a constant b-value stress path, combining the strength function in the p-q and pi planes. Considering the low confining pressure, the strength criterion in the p-q plane fitted the linear relationship in the parabolic strength criterion well. The strength criterion in the pi plane was combined with stress invariants, and a new strength criterion was established. This criterion considers unequal tension and compression strength, and integrates temperature. Test results indicated its validity. All parameters of the strength criterion could be easily determined from the triaxial compression and triaxial tensile tests.