Soil microbes and enzymes mediate soil carbon-climate feedback, and their responses to increasing temperature partly affect soil carbon stability subjected to the effects of climate change. We performed a 50-month incubation experiment to determine the effect of long-term warming on soil microbes and enzymes involved in carbon cycling along permafrost peatland profile (0-150 cm) and investigated their response to water flooding in the active soil layer. Soil bacteria, fungi, and most enzymes were observed to be sensitive to changes in temperature and water in the permafrost peatland. Bacterial and fungal abundance decreased in the active layer soil but increased in the deepest permafrost layer under warming. The highest decrease in the ratio of soil bacteria to fungi was observed in the deepest permafrost layer under warming. These results indicated that long-term warming promotes recalcitrant carbon loss in permafrost because fungi are more efficient in decomposing high-molecular-weight compounds. Soil microbial catabolic activity measured using Biolog Ecoplates indicated a greater degree of average well color development at 15 degrees C than at 5 degrees C. The highest levels of microbial catabolic activity, functional diversity, and carbon substrate utilization were found in the permafrost boundary layer (60-80 cm). Soil polyphenol oxidase that degrades recalcitrant carbon was more sensitive to increases in temperature than 13-glucosidase, N-acetyl-13-glucosaminidase, and acid phosphatase, which degrade labile carbon. Increasing temperature and water flooding exerted a synergistic effect on the bacterial and fungal abundance and 13-glucosidase, acid phosphatase, and RubisCO activity in the topsoil. Structural equation modeling analysis indicated that soil enzyme activity significantly correlated with ratio of soil bacteria to fungi and microbial catabolic activity. Our results provide valuable insights into the linkage response of soil microorganisms, enzymes to climate change and their feedback to permafrost carbon loss.
Knowledge of the spatiotemporal dynamics of the soil temperature in cold environment is key to understanding the effects of climate change on land-atmosphere feedback and ecosystem functions. Here, we quantify the recent thermal status and trends in shallow ground using the most up-to-date data set of over 457 sites in Russia. The data set consists of in situ soil temperatures at multiple depths (0.8, 1.6, and 3.2 m) collected from 1975 to 2016. For the region as a whole, significant soil warming occurred over the period. The mean annual soil temperature at depths of 0.8, 1.6, and 3.2 m increased at the same level, at ca 0.30-0.31 degrees C/decade, whereas the increase in maximum soil temperature ranged from 0.40 degrees C/decade at 0.8 m to 0.31 degrees C/decade at 3.2 m. Unlike the maximum soil temperature, the increases in minimum soil temperature did not vary (ca 0.25 degrees C/decade) with depth. Due to the overall greater increase in maximum soil temperature than minimum soil temperature, the intra-annual variability of soil temperature increased over the decades. Moreover, the soil temperature increased faster in the continuous permafrost area than in the discontinuous permafrost and seasonal frost areas at shallow depths (0.8 and 1.6 m depth), and increased slower at the deeper level (3.2 m). The warming rate of the maximum soil temperature at the shallower depths was less than that at the deeper level over the discontinuous permafrost area but greater over the seasonal frost area. However, the opposite was found regarding the increase in minimum soil temperature. Correlative analyses suggest that the trends in mean and extreme soil temperatures positively relate to the trends in snow cover thickness and duration, which results in the muted response of intra-annual variability of the soil temperature as snow cover changes. This study provides a comprehensive view of the decadal evolutions of the shallow soil temperatures over Russia, revealing that the temporal trends in annual mean and extreme soil temperatures vary with depth and permafrost distribution.
Rising temperatures in the Arctic and the expansion of plants to higher latitudes will significantly alter belowground microbial communities and their activity. Given that microbial communities are major producers of greenhouse gases, understanding the magnitude of microbial responses to warming and increased carbon input to Arctic soils is necessary to improve global climate change models. In this study, active layer and permafrost soils from northern Greenland (81 degrees N) were subjected to increased carbon input, in the form of plant litter, and temperature increase, using a combined field and laboratory approach. In the field experiment, unamended or litter-amended soils were transplanted from the permafrost layer to the top soil layer and incubated for one year, whereas in the laboratory experiment active layer and permafrost soils with or without litter amendment were incubated at 4 degrees C or 15 degrees C for six weeks. Soil microbial communities were evaluated using bacterial 16S and fungal ITS amplicon sequencing and respiration was used as a measure of microbial activity. Litter amendment resulted in similar changes in microbial abundances, diversities and structure of microbial communities, in the field and lab experiments. These changes in microbial communities were likely due to a strong increase in fast-growing bacterial copiotrophic taxa and basidiomycete yeasts. Furthermore, respiration was significantly higher with litter input for both active layer and permafrost soil and with both approaches. Temperature alone had only a small effect on microbial communities, with the exception of the field-incubated permafrost soils, where we observed a shift towards oligotrophic taxa, specifically for bacteria. These results demonstrate that alterations in High Arctic mineral soils may result in predictable shifts in the soil microbiome.