共检索到 3

Soil thermal regime in permafrost regions is sensitive to climate change and may cause vast ecological consequences under future warming scenarios. However, there still lacks a systematic evaluation on the effect of warming on soil thermodynamics in the different ecosystems of permafrost regions. This study investigated the alterations of soil thermodynamics in alpine swamp meadow and alpine steppe under experimental warming by open-top chambers in permafrost regions of the central Tibetan Plateau. The results showed that air temperature increased significantly with an annual mean increase of 1.4 degrees C under warming. Compared to alpine swamp meadow, soil thermodynamics represented by soil temperature, soil thermal parameters, soil freeze-thaw process and active layer thickness in alpine steppe was more susceptible to warming. Specifically, soil temperature at 5-40 cm depths increased more in alpine steppe than alpine swamp meadow under warming, especially at topsoil (5-20 cm). Moreover, the increase in soil temperature at topsoil was greater during cold season than warm season. Greater alterations of soil thermal parameters were likely because soil moisture content reduced more in alpine steppe. Regarding soil freeze-thaw process, warming significantly postponed the onset of completely frozen stage and reduced the completely frozen days in alpine steppe. Active layer thickness in alpine steppe distinctly increased by 46 cm on average and showed an increasing trend under warming from 2009 to 2011. Overall, vegetation coverage and soil moisture content were responsible for the different responses of soil thermodynamics to experimental warming. The study has important implications for future scenarios as permafrost and grassland degradation may intensify under climate warming.

期刊论文 2022-06-01 DOI: http://dx.doi.org/10.1016/j.geoderma.2020.114397 ISSN: 0016-7061

The impact of various modifications of the JSBACH land surface model to represent soil temperature and cold-region hydro-thermodynamic processes in climate projections of the twenty-first century is examined. We explore the sensitivity of JSBACH to changes in the soil thermodynamics, energy balance and storage, and the effect of including freezing and thawing processes. The changes involve 1) the net effect of an improved soil physical representation and 2) the sensitivity of our results to changed soil parameter values and their contribution to the simulation of soil temperatures and soil moisture, both aspects being presented in the frame of an increased bottom boundary depth from 9.83 to 1418.84 m. The implementation of water phase changes and supercooled water in the ground creates a coupling between the soil thermal and hydrological regimes through latent heat exchange. Momentous effects on subsurface temperature of up to +/- 3 K, together with soil drying in the high northern latitudes, can be found at regional scales when applying improved hydro-thermodynamic soil physics. The sensitivity of the model to different soil parameter datasets is relatively low but shows important implications for the root zone soil moisture content. The evolution of permafrost under preindustrial forcing conditions emerges in simulated trajectories of stable states that differ by 4-6 x 10(6) km(2) and shows large differences in the spatial extent of 10(5)-10(6) km(2) by 2100, depending on the model configuration.

期刊论文 2021-12-01 DOI: 10.1175/JHM-D-21-0023.1 ISSN: 1525-755X

Soil thermal regime in permafrost regions is sensitive to climate change and may cause vast ecological consequences under future warming scenarios. However, there still lacks a systematic evaluation on the effect of warming on soil thermodynamics in the different ecosystems of permafrost regions. This study investigated the alterations of soil thermodynamics in alpine swamp meadow and alpine steppe under experimental warming by open-top chambers in permafrost regions of the central Tibetan Plateau. The results showed that air temperature increased significantly with an annual mean increase of 1.4 degrees C under warming. Compared to alpine swamp meadow, soil thermodynamics represented by soil temperature, soil thermal parameters, soil freeze-thaw process and active layer thickness in alpine steppe was more susceptible to warming. Specifically, soil temperature at 5-40 cm depths increased more in alpine steppe than alpine swamp meadow under warming, especially at topsoil (5-20 cm). Moreover, the increase in soil temperature at topsoil was greater during cold season than warm season. Greater alterations of soil thermal parameters were likely because soil moisture content reduced more in alpine steppe. Regarding soil freeze-thaw process, warming significantly postponed the onset of completely frozen stage and reduced the completely frozen days in alpine steppe. Active layer thickness in alpine steppe distinctly increased by 46 cm on average and showed an increasing trend under warming from 2009 to 2011. Overall, vegetation coverage and soil moisture content were responsible for the different responses of soil thermodynamics to experimental warming. The study has important implications for future scenarios as permafrost and grassland degradation may intensify under climate warming.

期刊论文 2020-08-01 DOI: 10.1016/j.geoderma.2020.114397 ISSN: 0016-7061
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页