共检索到 2

This study addresses a critical issue faced in harsh desert environments characterized by intense sunlight and dusty conditions, which pose significant challenges for applications ranging from solar panels and optical devices to architectural surfaces. In response, we have developed a silica coating that may offer a solution to these environmental challenges. The silica coating exhibits excellent anti-reflective properties, drastically reducing the amount of sunlight reflected from the coated surface and thereby enhancing photon absorption. This study examines the controlled tuning of optical and morphological properties in silica thin films, fabricated through reactive RF magnetron sputtering of an SiO2 target, using various oxygen-to-argon flow ratios [r(O2)=O2/Ar]. Empirical properties of the coatings were systematically examined and demonstrated to be finely tunable by adjusting r(O2). Additionally, surface morphology, as assessed by average roughness (Ra) measurements, was found to be strongly influenced by the oxygen concentration during deposition. Hydrophilicity of the silica coatings was assessed using contact angle measurements, demonstrating that the oxygen content in the films plays a significant role in influencing their hydrophilic properties. Furthermore, micromechanical properties of these silica coatings right after sputtering deposition and those exposed to outdoor conditions were systematically evaluated using Vickers indentation, showing, on one hand, that the hardness of the silica coatings can be regulated by adjusting the oxygen levels introduced during the deposition process, and on the other hand, a high mechanical stability of these silica even after 24 months of outdoor exposure in desert environments. Finally, this study also highlights that dust accumulation on the surface of these silica coatings is inversely proportional to the oxygen content into the films, demonstrating the coatings' self-cleaning properties. The hydrophobicity of the deposited silica thin films further contributes to their self-cleaning capabilities, making them particularly valuable in enhancing the performance of photovoltaic modules, especially in desert environments where dust accumulation can significantly impact efficiency. This multifaceted approach not only improves optical and mechanical properties but also offers a sustainable solution for maintaining the efficiency of solar panels and other devices in challenging environmental conditions.

期刊论文 2025-06-01 DOI: 10.1016/j.solener.2025.113485 ISSN: 0038-092X

Purpose Sodium alginate (Na-Alg) is a natural polysaccharide with a rich and renewable production that is widely used in the food, pharmaceutical and daily necessities industries, among other fields. The purpose of this study is to obtain a green and degradable shape memory material, calcium alginate (Ca-Alg) film was prepared and the mechanical properties, the shape memory effect of the film were investigated and confirmed. Design/methodology/approach The Ca-Alg films were prepared by Na-Alg, calcium chloride (CaCl2) solution, and flow extension method. Dissolve sodium alginate powder, remove bubbles, pour into petri dish, dry at 60 degrees C, add calcium chloride solution cross-linking and finally dry naturally. The effect of CaCl2 solution concentration on the mechanical properties of the films were investigated and discussed by universal tensile tester. The shape memory behavior and degradation performance of thin films were verified and studied by the fold-deploy shape memory test and soil embedding method, respectively. Findings The Ca-Alg films exhibited good mechanical and shape memory properties, with a 72.2% shape memory fixity ratio and a 92.3% shape memory recovery ratio, respectively. For a period of 120 days, the film treated with a 6 wt% CaCl2 solution degraded at a rate of approximately 53%. Research limitations/implications Shape memory polymers (SMPs) as intelligent materials are an important research direction for the development of modern high-tech materials. On the other hand, plastic pollution is a major problem today; as a result, preparing green degradable SMPs is essential. Originality/value This study synthesized transparent and degradable shape memory Ca-Alg films using Na-Alg and CaCl2 solution and the flow extension method.

期刊论文 2024-01-17 DOI: 10.1108/PRT-03-2022-0034 ISSN: 0369-9420
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页