共检索到 3

The transboundary mercury (Hg) pollution has caused adverse effects on fragile ecosystems of the Tibetan Plateau (TP). Yet, knowledge of transport paths and source regions of atmospheric Hg on the inland TP remains poor. Continuous measurements of atmospheric total gaseous mercury (TGM) were conducted in the central TP (Tanggula station, 5100 m a.s.l., June -October). Atmospheric TGM level at Tanggula station (1.90 +/- 0.30 ng m -3 ) was higher than the background level in the Northern Hemisphere. The identified high -potential source regions of atmospheric TGM were primarily located in the northern South Asia region. TGM concentrations were lower during the Indian summer monsoon (ISM) -dominant period (1.81 +/- 0.25 ng m -3 ) than those of the westerly -receding period (2.18 +/- 0.40 ng m -3 ) and westerly -intensifying period (1.91 +/- 0.26 ng m -3 ), contrary to the seasonal pattern in southern TP. The distinct TGM minima during the ISM -dominant period indicated lesser importance of ISM -transported Hg to Tanggula station located in the northern boundary of ISM intrusion, compared to stations in proximity to South and Southeast Asia source regions. Instead, from the ISM -dominant period to the westerly -intensifying period, TGM concentrations showed an increasing trend as westerlies intensified, indicating the key role of westerlies in transboundary transport of atmospheric Hg to the inland TP.

期刊论文 2024-07-01 DOI: http://dx.doi.org/10.1016/j.scitotenv.2024.173135 ISSN: 0048-9697

Air pollutants can be transported to the pristine regions such as the Tibetan Plateau, by monsoon and stratospheric intrusion. The Tibetan Plateau region has limited local anthropogenic emissions, while this region is influenced strongly by transport of heavy emissions mainly from South Asia. We conducted a comprehensive study on various air pollutants (PM2.5, total gaseous mercury, and surface ozone) at Nam Co Station in the inland Tibetan Plateau. Monthly mean PM2.5 concentration at Nam Co peaked in April before monsoon season, and decreased during the whole monsoon season (June-September). Monthly mean total gaseous mercury concentrations at Nam Co peaked in July and were in high levels during monsoon season. The Indian summer monsoon acted as a facilitator for transporting gaseous pollutants (total gaseous mercury) but a suppressor for particulate pollutants (PM2.5) during the monsoon season. Different from both PM2.5 and total gaseous mercury variabilities, surface ozone concentrations at Nam Co are primarily attributed to stratospheric intrusion of ozone and peaked in May. The effects of the Indian summer monsoon and stratospheric intrusion on air pollutants in the inland Tibetan Plateau are complex and require further studies. (C) 2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V.

期刊论文 2023-10-01 DOI: http://dx.doi.org/10.1016/j.gsf.2021.101255 ISSN: 1674-9871

One year of online total gaseous mercury (TGM) measurements were carried out for the first time in Lanzhou, a city in northwest China that was once seriously polluted. Measurements were made from October 2016 to October 2017 using the Tekran 2537B instrument, and the annual mean concentration of TGM in Lanzhou was 4.48 +/- 2.32 ng m(-3) (mean +/- standard deviation). TGM concentrations decreased during the measurement period, with autumn 2017 average concentrations 2.87 ng m(-3) lower than autumn 2016 average concentrations. Similar diurnal variations of TGM were obtained in different seasons with low concentrations observed in the afternoon and high concentrations at night. The principal component analysis and conditional probability function results revealed that the sources of mercury were similar to the other atmospheric pollutants such as SO2, CO, NO2 and PM2.5, and were mainly from industrial combustion plants in urban districts. Concentration weighted trajectory analysis using backward trajectories demonstrated that higher mercury concentrations were related to air masses from adjacent regions, indicating the importance of influences from local-to-regional scale sources. A synthesis of multi-decadal atmospheric mercury measurements in Lanzhou and other Chinese megacities revealed that atmospheric mercury concentrations were either generally stable or experienced a slight decrease, during a time when China implemented control measures on atmospheric pollution. Long-term atmospheric mercury observations in urban and background sites in China are warranted to assess mercury pollution and the effectiveness of China's mercury control policies. (C) 2020 Elsevier B.V. All rights reserved.

期刊论文 2020-01-20 DOI: http://dx.doi.org/10.1016/j.scitotenv.2020.137494 ISSN: 0048-9697
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页