The role of silicon in mitigating the incidence and damage of yellow stem borer in rice crops is well proven. However, the underlying mechanisms offered by silicon amendment in rice crops against yellow stem borer were not explored or poorly understood. Here, we have shown that silicon supplement to rice plants at 200 mg/kg of soil, improved silicification in stem tissues by increased length, width (18.1-32.5%), and area (6.6-14.2%) of silica cells and silicon content given over scanning electron microscopy and electron-dispersive spectrophotometric analysis. The increased activities of antioxidant and defense enzymes such as catalase (106-215%), superoxide dismutase (74.5%), peroxidase (52.1%), phenylalanine ammonia lyase (74%), and polyphenol oxidase (47.3%) in rice plants supplemented with silicon and infested with yellow stem borer at different durations were shown. The enhanced concentrations of total sugars (23.6%) and total phenols (18.4%) were also observed due to silicon supplement to rice plants. However, the defense enzyme activities were less in rice plants without silicon supplementation and yellow stem borer infestation. The outcome of the study highlighted the impact of silicon in activating the defense responses in rice plants infested with yellow stem borer. Silicon supplementation should be considered as one of the alternative and sustainable measures for integrated management of yellow stem borer in rice across ecosystems.
Aims Alpine forest gaps can control understory ecosystem processes by manipulating hydrothermal dynamics. Here, we aimed to test the role of alpine forest gap disturbance on total phenol loss (TPL) from the decomposing litter of two typical shrub species (willow, Salix paraplesia Schneid., and bamboo, Fargesia nitida (Mitford) Keng f.). Methods We conducted a field litterbag experiment within a representative fir (Abies faxoniana Rehd.) forest based on 'gap openness treatments' (plot positions in the gap included the gap center south, gap center north, canopy edge, expanded edge and closed canopy). The TPL rate and litter surface microbial abundance (fungi and bacteria) of the two shrub species were measured during the following periods over 2 years: snow formation (SF), snow cover (SC), snow melting (ST), the early growing season (EG) and the late growing season (LG). Important Findings At the end of the study, we found that snow cover depth, freeze-thaw cycle frequency and the fungal copies g(-1) to bacterial copies g(-1) ratio had significant effects on litter TPL. The abundances of fungi and bacteria decreased from the gap center to the closed canopy during the SF, SC, ST and LG periods and showed the opposite trend during the EG periods. The rate of TPL among plot positions closely followed the same trend as microbial abundance during the first year of incubation. In addition, both species had higher rates of TPL in the gap center than at other positions during the first winter, first year and entire 2-year period. These findings suggest that alpine forest gap formation accelerates litter TPL, although litter TPL exhibits dual responses to gap disturbance during specific critical periods. In conclusion, reduced snow cover depth and duration during winter warming under projected climate change scenarios or as gaps vanish may slow litter TPL in alpine biomes.