共检索到 9

Dibutyl phthalate (DBP) is one of the most widely used phthalate esters (PAEs) that raise increasing ecotoxicological concerns due to their harmful effects on living organisms and ecosystems. Recently, while PAEs pollution in the Yangtze River has attracted significant attention, little research has been conducted on the impact of PAEs stress on S. prenanti, an endemic and valuable species in the Yangtze River. In this study, one control group (C-L) and three experimental groups: T1-L (3 mu g/L), T2-L (30 mu g/L), and T3-L (300 mu g/L) were established with reference to the DBP concentration in the environment. For the first time, we investigated the effects of DBP stress on the liver of S. prenanti using histomorphological, physiological, and biochemical indexes, as well as a joint multi-omics analysis. The results revealed that compared to the C-L group, liver structural damage and stress were not significant in the environmental concentration group (T1-L) and the number of differential genes and differential metabolites were lower. However, as DBP stress concentration increased, the liver damage became severe, with significant vacuolation and hemolysis observed in the T2-L and T3-L groups. The TUNEL assay revealed a significant increase in the number of apoptotic cells along with a notable rise in differential genes and metabolites in the T2-L and T3-L groups. Oxidative stress markers (T-AOC, SOD, CAT, and GSH-PX) were also significantly higher in the T2-L and T3-L groups. RNA-Seq analysis showed that the protein processing in the endoplasmic reticulum pathway was most significantly-enriched differential gene pathway shared by both C-L vs T2-L and C-L vs T3-L, with most of the genes in this pathway showing significant up-regulation. This suggests that the protein processing in the endoplasmic reticulum pathway may play a key role in protecting the liver from injuries caused by high DBP stress. Interestingly, C XI, C XII, C XIII, C XIV and C XV in the chemical carcinogenesis-reactive oxygen species pathway were significantly down-regulated in the T2-L and T3-L groups based on combined transcriptomic and metabolomic analyses, suggesting that DBP causes liver injury by disrupting mitochondria. This comprehensive histomorphometric and multi-omics study demonstrated that the current DBP concentration in the habitat of S. prenanti in the upper reaches of the Yangtze River temporarily causes less liver damage. However, with increasing of DBP concentration, DBP could still cause serious liver damage to S. prenanti. This study provides a new mechanistic understanding of the liver response mechanism of S. prenanti under different concentrations of DBP stress and offers basic data for the ecological protection of the Yangtze River.

期刊论文 2025-08-01 DOI: 10.1016/j.aquatox.2025.107390 ISSN: 0166-445X

Zinc (Zn), an essential nutrient element, exhibits hormesis in plants-beneficial at low doses but toxic at high concentrations. To understand the molecular mechanisms underlying this hormetic response with low-dose stimulation and high-dose inhibition in wheat, we conducted transcriptomic analysis under different Zn treatments. Low Zn concentration (50 mu M) promoted plant growth by maintaining chlorophyll content, enhancing MAPK signaling, phytohormone signaling, glutathione metabolism, nitrogen metabolism, and cell wall polysaccharide biosynthesis. High Zn concentration (500 mu M) induced ultrastructural damage and suppressed photosynthesis, chlorophyll metabolism, and secondary metabolisms, while upregulating glutathione metabolism. Molecular docking revealed that hydrogen bonds between Zn and antioxidant enzymes facilitated reactive oxygen species scavenging. Notably, exogenous glutathione (GSH) application enhanced wheat tolerance to Zn stress by strengthening the antioxidant defense system and improving photosynthetic capacity. Our findings elucidate the underlying mechanisms of Zn hormesis in wheat and demonstrate the application potential of glutathione in mitigating Zn toxicity, providing strategies for managing Zn-contaminated soils.

期刊论文 2025-06-01 DOI: 10.1016/j.stress.2025.100820 ISSN: 2667-064X

Saline-alkaline stress is a common problem in Akebia trifoliata cultivation. In this study, the enhancing effects of 5-azacytidine (5-AzaC) on the resistance of A. trifoliata to saline-alkaline stress and the underlying mechanisms were investigated. Plant height, stem diameter, biomass, root length, fresh weight of root, and root/shoot ratio of 6-month-old A. trifoliata seedlings were measured after saline-alkaline stress with or without 5-AzaC treatment. Moreover, the contents of photosynthetic pigments, malondialdehyde (MDA), H2O2, sodium, soluble sugar, and proline; activities of superoxide dismutase, peroxidase (POD), and catalase (CAT); and anatomical structures of root, stem, and leaf were assessed. Furthermore, comparative transcriptome sequencing was performed. The results demonstrated that growth and development of A. trifoliata were severely inhibited under saline-alkaline stress, suggesting that the seedlings were exposed to severe oxidative and osmotic stresses. Treatment with exogenous 5-AzaC could significantly relieve the symptoms of saline-alkaline stress in A. trifoliata. Under saline-alkaline stress, 5-AzaC could increase the stem diameter, biomass, root length, fresh weight of root, and root/shoot ratio and minimize damages to the anatomical structure. Moreover, absorption of Na+ was reduced; ionic balance was maintained; POD and CAT activities were significantly improved; proline and soluble sugar contents increased, and H2O2 and MDA contents decreased. Transcriptome analysis revealed that 5-AzaC functioned via regulating KEGG pathways such as plant hormone signal transduction, phenylpropanoid biosynthesis, photosynthesis, amino sugar and nucleotide sugar metabolism, and glutathione metabolism under saline-alkaline stress. Particularly, enhanced expression of genes from the auxin pathway in plant hormone signal transduction; the lignin synthetic pathway in phenylpropanoid biosynthesis; and photosystem II, photosystem I, photosynthetic electron transport, and F-type ATP pathway in photosynthesis may be related to 5-AzaC-induced saline-alkaline resistance. The results provided theoretical references for A. trifoliata cultivation in saline-alkaline soil and application of 5-AzaC to improve saline-alkaline tolerance in plants.

期刊论文 2025-05-14 DOI: 10.7717/peerj.19285 ISSN: 2167-8359

Soil salinization threatens sustainable agriculture, necessitating innovative restoration strategies. Suaeda salsa (L.) Pall., a halophyte with exceptional salt tolerance and vivid pigmentation, serves as an ideal model for salinity adaptation. This study integrates physiological and transcriptomic analyses to reveal how high salinity (400 mmolL(-)1 NaCl) upregulates 4,5-DOPA dioxygenase after 30 days of salt stress, promoting betacyanin accumulation to mitigate oxidative damage. Compared to the control, betacyanin content in the 200 mmolL(-)1 and 400 mmolL(-)1 NaCl groups increased to 1.975-fold and 3.675-fold, respectively, while chlorophyll a content decreased by 45.78% and 69.88%, chlorophyll b by 11.45% and 28.24%, and total chlorophyll by 30.28% and 53.06%. This trade-off in pigment allocation highlights the plant's adaptive strategy under salinity stress. The photosynthetic characteristics of S. salsa confirm that its photoprotective mechanisms are significantly enhanced under 400 mmolL(-)1 NaCl. At the molecular level, betacyanin biosynthesis alleviates oxidative stress, while transcriptional regulation of photosystem I (PSI) and photosystem II (PSII) genes-such as PsbY, PsaO, PsbM, and PsbW-partially restores photosynthetic activity. Stabilization of the electron transport chain by upregulated genes like PetA and PetH further enhances photosynthetic resilience. These findings highlight the synergy between betacyanin production and photosynthetic regulation in enhancing salinity resilience, providing insights for soil restoration and salt-tolerant crop breeding.

期刊论文 2025-05-01 DOI: 10.1007/s00425-025-04664-7 ISSN: 0032-0935

Soil salinization and alkalinization are pervasive environmental issues that severely restrict plant growth and crop yield. Utilizing plant growth-promoting rhizobacteria (PGPR) is an effective strategy to enhance plant tolerance to saline-alkaline stress, though the regulatory mechanisms remain unclear. This study employed biochemical and RNA-Seq methods to uncover the critical growth-promoting effects of Trichoderma spp. on Salix linearistipularis under saline-alkaline stress. The results showed that, during saline-alkaline stress, inoculation with Trichoderma sp. M4 and M5 significantly increased the proline and soluble sugar contents in Salix linearistipularis, enhanced the activities of SOD, POD, CAT, and APX, and reduced lipid peroxidation levels, with M4 exhibiting more pronounced effects than M5. RNA-Seq analysis of revealed that 11,051 genes were upregulated after Trichoderma sp. M4 inoculation under stress conditions, with 3532 genes primarily involved in carbon metabolism, amino acid biosynthesis, and oxidative phosphorylation-processes that alleviate saline-alkaline stress. Additionally, 7519 genes were uniquely upregulated by M4 under stress, mainly enriched in secondary metabolite biosynthesis, amino acid metabolism, cyanamide metabolism, and phenylpropanoid biosynthesis. M4 mitigates saline-alkaline stress-induced damage in Salix linearistipularis seedlings by reducing oxidative damage, enhancing organic acid and amino acid metabolism, and activating phenylpropanoid biosynthesis pathways to eliminate harmful ROS. This enhances the seedlings' tolerance to saline-alkaline stress, providing a basis for studying fungi-plant interactions under such conditions.

期刊论文 2024-10-01 DOI: 10.3390/agronomy14102358

Salt stress caused by high concentrations of Na+ and Cl- in soil is one of the most important abiotic stresses in agricultural production, which seriously affects grain yield. The alleviation of salt stress through the application of exogenous substances is important for grain production. Melatonin (MT, N-acetyl-5-methoxytryptamine) is an indole-like small molecule that can effectively alleviate the damage caused by adversity stress on crops. Current studies have mainly focused on the effects of MT on the physiology and biochemistry of crops at the seedling stage, with fewer studies on the gene regulatory mechanisms of crops at the germination stage. The aim of this study was to explain the mechanism of MT-induced salt tolerance at physiological, biochemical, and molecular levels and to provide a theoretical basis for the resolution of MT-mediated regulatory mechanisms of plant adaptation to salt stress. In this study, we investigated the germination, physiology, and transcript levels of maize seeds, analyzed the relevant differentially expressed genes (DEGs), and examined salt tolerance-related pathways. The results showed that MT could increase the seed germination rate by 14.28-19.04%, improve seed antioxidant enzyme activities (average increase of 11.61%), and reduce reactive oxygen species accumulation and membrane oxidative damage. In addition, MT was involved in regulating the changes of endogenous hormones during the germination of maize seeds under salt stress. Transcriptome results showed that MT affected the activity of antioxidant enzymes, response to stress, and seed germination-related genes in maize seeds under salt stress and regulated the expression of genes related to starch and sucrose metabolism and phytohormone signal transduction pathways. Taken together, the results indicate that exogenous MT can affect the expression of stress response-related genes in salt-stressed maize seeds, enhance the antioxidant capacity of the seeds, reduce the damage induced by salt stress, and thus promote the germination of maize seeds under salt stress. The results provide a theoretical basis for the MT-mediated regulatory mechanism of plant adaptation to salt stress and screen potential candidate genes for molecular breeding of salt-tolerant maize.

期刊论文 2024-08-01 DOI: 10.3390/plants13152142 ISSN: 2223-7747

Heavy metal contamination negatively affects plants and animals in water as well as soils. Some microalgae can remove heavy metal contaminants from wastewater. The aim of this study was to screen green microalgae (GM) to identify those that tolerate high concentrations of toxic heavy metals in water as possible candidates for phytoremediation. Analyses of the tolerance, physiological parameters, ultrastructure, and transcriptomes of GM under Cd/Pb treatments were conducted. Compared with the other GM, Chlorella pyrenoidosa showed stronger tolerance to high concentrations of Cd/Pb. The reduced glutathione content and peroxidase activity were higher in C. pyrenoidosa than those in the other GM. Ultrastructural observations showed that, compared with other GM, C. pyrenoidosa had less damage to the cell surface and interior under Cd/Pb toxicity. Transcriptome analyses indicated that the peroxisome and sulfur metabolism pathways were enriched with differentially expressed genes under Cd/Pb treatments, and that CpSAT, CpSBP, CpKAT2, Cp2HPCL, CpACOX, CpACOX2, and CpACOX4, all of which encode antioxidant enzymes, were up-regulated under Cd/Pb treatments. These results show that C. pyrenoidosa has potential applications in the remediation of polluted water, and indicate that antioxidant enzymes contribute to Cd/Pb detoxification. These findings will be useful for producing algal strains for the purpose of bioremediation in water contamination.

期刊论文 2024-02-20 DOI: 10.1016/j.scitotenv.2023.168712 ISSN: 0048-9697

Dibutyl phthalate (DBP) is one of the most commonly utilized plasticizers and a frequently detected phthalic acid ester (PAE) compound in soil samples. However, the toxicological effects of DBP on soil-dwelling organisms remain poorly understood. This study employed a multi-biomarker approach to investigate the impact of DBP exposure on Folsomia candida's survival, reproduction, enzyme activity levels, and transcriptional profiles. An-alyses of antioxidant biomarkers, including catalase (CAT) and glutathione S-transferase (GST), as well as detoxifying enzymes such as acetylcholinesterase (AChE), Cytochrome P450 (CYP450), and lipid peroxidation (LPO), revealed significant increases in CAT activity, GST levels, and CYP450 expression following treatment with various doses of DBP for 2, 4, 7, or 14 days. Additionally, LPO induction was observed along with significant AChE inhibition. In total, 3175 differentially expressed genes (DEGs) were identified following DBP treatment that were enriched in six Gene Ontology (GO) terms and 144 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including 85 upregulated and 59 downregulated primarily associated with lipid metabolism, signal transduction, DNA repair, and cell growth and death. Overall these results provide foundational insights for further research into the molecular mechanisms underlying responses of soil invertebrates to DBP exposure.

期刊论文 2024-01-15 DOI: 10.1016/j.jhazmat.2023.132644 ISSN: 0304-3894

In recent years, alkaline soda soil has stimulated numerous biological research on plants under carbonate stress. Here, we explored the difference in physiological regulation of rice seedlings between saline (NaCl) and alkaline carbonate (NaHCO3 and Na2CO3) stress. The rice seedlings were treated with 40 mM NaCl, 40 mM NaHCO3 and 20 mM Na2CO3 for 2 h, 12 h, 24 h and 36 h, their physiological characteristics were determined, and organic acid biosynthesis and metabolism and hormone signalling were identified by transcriptome analysis. The results showed that alkaline stress caused greater damage to their photosynthetic and antioxidant systems and led to greater accumulation of organic acid, membrane damage, proline and soluble sugar but a decreased jasmonic acid content compared with NaCl stress. Jasmonate ZIM-Domain (JAZ), the probable indole-3-acetic acid-amido synthetase GH3s, and the protein phosphatase type 2Cs that related to the hormone signalling pathway especially changed under Na2CO3 stress. Further, the organic acid biosynthesis and metabolism process in rice seedlings were modified by both Na2CO3 and NaHCO3 stresses through the glycolate/glyoxylate and pyruvate metabolism pathways. Collectively, this study provides valuable evidence on carbonate-responsive genes and insights into the different molecular mechanisms of saline and alkaline stresses.

期刊论文 2024-01-01 DOI: 10.1071/FP23161 ISSN: 1445-4408
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-9条  共9条,1页