共检索到 4

Absorbing aerosols supplements the global warming caused by greenhouse gases. However, unlike greenhouse gases, the effect of absorbing aerosol on climate is not known with certainty owing to paucity of data. Also, uncertainty exists in quantifying the contributing factors whether it is biomass or fossil fuel burning. Based on the observations of absorption coefficient at seven wavelengths and aerosol optical depth (AOD) at five wavelengths carried out at Gadanki (13.5 degrees N, 79.2 degrees E), a remote village in peninsular India, from April to November 2008, as part of the Study of Atmospheric Forcing and Responses (SAFAR) pilot campaign we discuss seasonal variation of black carbon ( BC) concentration and aerosol optical depth. Also, using spectral information we estimate the fraction of fossil-fuel and non-fossil fuel contributions to absorption coefficient and contributions of soot ( Black Carbon), non-soot fine mode aerosols and coarse mode aerosols to AOD. BC concentration is found to be around 1000 ng/m(3) during monsoon months (JJAS) and around 4000 ng/m(3) during pre and post monsoon months. Non-fossil fuel sources contribute nearly 20% to absorption coefficient at 880 nm, which increases to 40% during morning and evening hours. Average AOD is found to be 0.38 +/- 0.15, with high values in May and low in September. Soot contributes nearly 10% to the AOD. This information is further used to estimate the clear sky aerosol direct radiative forcing. Top of the atmosphere aerosol radiative forcing varies between -4 to 0 W m(-2), except for April when the forcing is positive. Surface level radiative forcing is between -10 to -20 W m(-2). The net radiation absorbed within the atmosphere is in the range of 9 to 25 W m(-2), of which soot contributes about 80 to 90%.

2010-01-01 Web of Science

Seasonal distinctiveness in the microphysical and optical properties of columnar and near-surface (in the well mixed region) aerosols, associated with changes in the prevailing synoptic conditions, were delineated based on extensive (spread over 4 years) and collocated measurements at the tropical coastal location, Trivandrum (8.55 degrees N; 76.97 degrees E, 3 m a.m.s.l.), and the results were summarized in Part 1 of this two-part paper. In Part 2, we use these properties to develop empirical seasonal aerosol models, which represent the observed features fairly accurately, separately for winter monsoon season (WMS, December through March), inter-monsoon season (IMS, April and May), summer monsoon season (SMS, June through September) and post monsoon season (PMS, October and November). The models indicate a significant transformation in the aerosol environment from an anthropogenic-dominance in WMS to a natural-dominance in SMS. The modeled aerosol properties are used for estimating the direct, short wave aerosol radiative forcing, under clear-sky conditions. Our estimates show large seasonal changes. Under clear sky conditions, the daily averaged short-wave TOA forcing changes from its highest values during WMS, to the lowest values in SMS; this seasonal change being brought-in mainly by the reduction in the abundance and the mass fraction (to the composite) of black carbon aerosols and of accumulation mode aerosols. The resulting atmospheric forcing varies from the highest, (47 to 53 W m(-2)) in WMS to the lowest (22 to 26 W m(-2)) in SMS.

2007-01-01 Web of Science

In Part 1 of this two-part paper, we present the results of extensive and collocated measurements of the columnar and near-surface (in the well mixed region) properties of atmospheric aerosol particles at a tropical coastal location, Trivandrum (8.55 degrees N; 76.97 degrees E), located close to the southwest tip of Indian peninsula. These are used to evolve average, climatological pictures of the optical and microphysical properties and to delineate the distinct changes associated with the contrasting monsoon seasons as well as the transition from one season to the other. Our observations show a dramatic change in the columnar aerosol optical depth (AOD) spectra, being steep during winter monsoon season (WMS, months of December through March) and becoming quite flat during summer monsoon season (SMS, June through September). The derived angstrom angstrom exponent (alpha) decreases from a mean value of 1.1 +/- 0.03 in WMS to 0.32 +/- 0.02 in SMS, signifying a change in columnar aerosol size spectrum from an accumulation mode dominance in WMS to a coarse mode dominance in SMS. The composite aerosols near the surface follow suit with the share of the accumulation mode to the total mass concentration decreasing from similar to 70% to 34% from WMS to SMS. The overall mass burden also decreases in tandem. The changes in alpha are well correlated to those in the accumulation fraction of the mass concentration. Long-term measurements of the concentration of aerosol black carbon (BC), show prominent annual variations, with its mean value decreasing from as high as 6 mu gm(-3) in WMS to 2 mu gm(-3) in SMS. Correspondingly, its mass mixing ratio to the composite aerosols comes down from 11% to 4%. The changes in AOD and alpha are significantly positively correlated to those of BC concentration. The columnar properties are, in general well associated with the features near the surface. The implications of these changes to the optical properties and single scattering albedo and the resulting impact on direct radiative forcing are examined in the companion paper (Part 2).

2007-01-01 Web of Science

Mineral dust constitutes the single largest contributor to continental aerosols. To accurately assess the impact of dust aerosols on climate, the spatial and temporal distribution of dust radiative properties is essential. Regional characteristics of dust radiative properties, however, are poorly understood. The magnitude and even sign of dust radiative forcing is uncertain, as it depends on a number of parameters, such as vertical distribution of dust, cloud cover and albedo of the underlying surface. In this paper, infrared radiance (10.5-12.5 mu m), acquired from the METEOSAT-5 satellite (similar to 5-km resolution), was used to retrieve regional characteristics of dust aerosols for all of 1999. The infrared radiance depression, due to the presence of dust in the atmosphere, has been used as an index of dust load, known as the Infrared Difference Dust Index (IDDI). There have been several studies in the past carried out over the Sahara using IDDI as a measure of dust load. Over the Indian region, however, studies on dust aerosols are sparse. Spatial and temporal variability in dust loading and its regional distribution over various arid and semiarid regions of India and adjacent continents (0-35 degrees N; 30 degrees E-100 degrees E) (excluding Sahara) have been studied and the results are examined along with surface soil conditions (such as vegetation cover and soil moisture). The advantage of the IDDI method is that information on aerosol properties, such as chemical composition or microphysical properties, is not needed. A large day-to-day variation in IDDI was observed over the entire study region, with values ranging from 4 to 22 K. It was observed that dust activity starts by March over the Indian deserts, as well as over deserts of the Africa and Arabian regions. The IDDI reaches maximum during the period of May to August. Regional maps of IDDI, in conjunction with biomass burning episodes (using TERRA satellite fire pixel counts), suggest that large IDDI values observed during the winter months over Northern India could be due to a possible deposition of black carbon on larger dust aerosols. The IDDI values have been compared with another year (i.e. 2003), with a large number of dust storms reported by meteorological departments based on visibility data. During the dry season, the magnitude of the monthly average IDDI during 2003 was slightly higher than that of 1999. The monthly mean IDDI was in the range from 4 to 9 K over the Indian deserts, as well as over the deserts of Africa and Arabia. The maximum IDDI during a month was in the range from 6 to 18 K. Large IDDI values were observed even over vegetated regions (such as the vegetated part of Africa and central India), attributed to the presence of transported dust from nearby deserts.

2006-01-01 Web of Science
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页