共检索到 10

Global warming has led to permafrost thawing in mid-latitude alpine regions, resulting in greater availability of carbon (C) and nutrients in soils. However, how these changes will impact the functional genetic potential of permafrost soil microbiomes, and subsequently, how they will influence the microbially mediated feedback of mountain soils under climate change remains unknown. To help answer this question, we conducted a permafrost thawing experiment on the north-facing slope near the summit of Muot da Barba Peider (2979 m above sea level) in the Swiss Alps. Specifically, we transplanted permafrost soils from a depth of 160 cm to the active-layer topsoils (0-18 cm) and incubated the soils in situ for three years. Using shotgun metagenomics, we found that transplantation significantly altered the gene structure of the permafrost microbiome, with changes occurring in the short term (< one year) and remaining stable over time. Transplanted soils exhibited an enhanced functional genetic potential, particularly for genes related to Information storage and processing, Cellular processes and signaling and Metabolism functions, which suggests increased cellular processes and metabolism. Carbohydrate-active enzymes involved in the degradation of both labile (such as starch) and recalcitrant (such as lignin) C substrates were enriched in transplanted soils, indicating an enhanced C-degradation potential. Nitrogen (N)-cycling genes related to the degradation and synthesis of N compounds, denitrification, assimilation and dissimilatory nitrate reduction were overrepresented in the transplanted soil, pointing to enhanced N assimilation and transformation potential. Our study elucidates how the permafrost microbiome may functionally respond to warming in the European Alps. This research complements observations from Tibetan and Arctic regions, improving our understanding of functional changes in thawing permafrost globally.

期刊论文 2025-06-01 DOI: 10.1016/j.geoderma.2025.117339 ISSN: 0016-7061

Vegetable production on plastic mulch in Georgia often combines fumigation, drip tape, raised beds, and plastic mulch, where three to five high-value crops are produced over 2 yr. With the elimination of methyl bromide as a soil fumigant, herbicides applied over plastic mulch before crop transplanting have become essential to maintain weed control. However, proper care must be taken to avoid crop damage from any herbicide residue. Experiments using simulated vegetable beds covered with totally impermeable film (TIF) were conducted to quantify the concentration of halosulfuron-methyl, glufosinate, glyphosate, S-metolachlor, and acetochlor remaining on the mulch and the amount of each herbicide that moved into the crop transplant hole when irrigation water was applied. With 0.63 cm of water irrigation, glufosinate > halosulfuron-methyl > S-metolachlor > acetochlor. All herbicide concentrations were below 1.0 mg ai/ae in the transplant hole regardless of irrigation volume. For halosulfuron, glyphosate, and glufosinate, these concentrations were equal to a 1.3 to 8.9 times the field use rate washing into the transplant hole. Acetochlor and S-metolachlor concentrations in the transplant hole were equivalent to 0.1x to 0.7x of field use rates, respectively. With further evaluations, the quantified herbicide concentrations in the transplant hole can be used to make changes to recommended rates and potentially create new options for growers to utilize.

期刊论文 2025-04-21 DOI: 10.1017/wsc.2025.17 ISSN: 0043-1745

Since the characteristics of plug seedlings affect the effectiveness of automatic transplanting, this study aimed to explore the effect of the addition of biochar into substrates on the growth of plug seedlings before and after transplanting. The physicochemical properties of substrates with 0%, 5%, 10%, 15%, 20%, and 25% biochar addition all met the requirements of seedling cultivation. The growth trend, root systems, and mechanical properties of seedlings before transplanting and the leaf gas exchange parameters of seedlings after transplanting were measured in this study. The results indicated that the seedlings cultivated with 10% biochar added to the substrate achieved the best growth trend and physiological indices, and the root systems under this treatment were also stronger than those of other treatments, while the seedlings cultivated with 25% biochar treatment were the worst, with less than 22.23% of the growth seen in the 10% biochar treatment, and even less than 1.5% of the growth of the seedlings cultivated without biochar treatment. Since the strong root systems could enhance the mechanical properties of seedling pots, the seedling pots cultivated with 10% biochar added into the substrate possessed the best compression resistance properties, with the maximum value of 49.52 N, and could maintain maximum completeness after free-fall impacting, wherein the loss of root and substrate was only 8.22%. The analysis results of seedlings cultivated after impacting proposed that the seedlings with better growth trends and root systems before transplanting could obtain better leaf gas exchange parameters during the flower stage after transplanting, so the seedlings cultivated with 5%similar to 10% biochar added into the substrate grew better after impacting and then transplanting. It was noticed that the seedlings cultivated with appropriate biochar added into the substrate were able to achieve the optimal growth parameters and mechanical properties before and after transplanting, which were better able to meet the requirements of automatic transplanting. Thus, this study can promote the development of automatic transplanting technology to some extent.

期刊论文 2024-11-01 DOI: 10.3390/agriculture14112012

Metering device is a main component of vegetable transplanters that could save cost of operation and labour requirement in transplanting. Therefore, a tractor-drawn three-row automatic vegetable transplanter using an inclined magazine-type metering device for cylindrical paper pot seedlings was developed and evaluated in field. Experiments on metering device were conducted at seven forward speeds 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 and 2.2 km/h, to determine the optimal performance speed for 45-day old tomato seedlings. Data on seedling spacing, tilted planting, soil cover, seedling damaged while conveying and feeding and transplanting were recorded and analysed for conveying efficiency (CE), feeding efficiency (FE), transplanting efficiency (TE), overall efficiency (OE) and seedling spacing (SS). The CE, FE, TE and OE were found to be 100, 83.3, 91.7 and 96.7%, respectively, at 1.2 km/h. The SS was ranged from 633 to 651 mm for speed range of 1-1.2 km/h. Based on the optimized values of laboratory studies, a tractor-drawn three-row automatic vegetable transplanter was developed and evaluated in the field. The field performance data revealed that actual field capacity of the machine was 0.11 ha/h at a forward speed of 1.2 km/h, with a 50% field efficiency. The transplanter can transplant per row 33 seedlings/min, compared to 3.7 seedlings/min by manual method. Also, the saving in cost and labour is about 55 and 93.9% as compared to manual method. This transplanter offers efficient transplanting of potted seedlings, ensuring timely operation, labour savings and reduced drudgery compared to conventional practices.

期刊论文 2024-10-22 DOI: 10.1007/s40003-024-00793-9 ISSN: 2249-720X

Sustainable economic development serves society but requires taking over space, often at the expense of areas occupied by single trees or even parts of forest areas. Techniques for transplanting adult trees used in various conflict situations at the interface of economy and nature work as a tool for sustainable management of urbanized and industrial areas, as well as, in certain circumstances, forest or naturally valuable areas. This study aimed to evaluate the effectiveness of ground-penetrating radar (GPR) in determining the horizontal and vertical extent of tree root systems before transplantation. Employing this non-invasive method to map root system architecture aids in the appropriate equipment selection and helps define the dimensions and depth of trenches to minimize root damage during excavation. This study specifically focused on the root systems of wild service trees (Sorbus torminalis (L.) Crantz) found in a limestone mine area, where some specimens were planned to be transplanted, as the species is protected under law in Poland. The root systems were scanned with a ground-penetrating radar equipped with a 750 MHz antenna. Then, the root balls were dug out, and the root parameters and other dendrometric parameters were measured. The GPR survey and manual root analyses provided rich comparative graphic material. The number of the main roots detected by the GPR was comparable to those inventoried after extracting the stump. The research was carried out in problematic soil, causing non-standard deformations of the root systems. Especially in such conditions, identifying unusually arranged roots using the GPR method is valuable because it helps in a detailed planning of the transplanting process, minimizing root breakage during the activities carried out, which increases the survival chances of the transplanted tree in a new location.

期刊论文 2024-10-01 DOI: 10.3390/su16209037

Existing fully-automatic transplanters suffer from issues such as low accuracy in conveying and positioning seedling trays, inefficient picking and throwing due to complex movement paths, and seedling damage during the picking process. To address these challenges, this study presents innovative devices for seedling conveying in the X-direction and seedling picking in the Y-direction, considering both row and longitudinal intervals, which simplifies the mechanical structure. Based on these devices, methods were developed to achieve precise seedling positioning in both X and Y directions using multi-sensor combinations and motor control. A Finite State Machine (FSM) model was employed to propose a cooperative method for conveying and picking seedlings, simplifying the execution order and enabling continuous action without dragging or injuring the remaining seedlings. Experimental validation using 72-hole trays demonstrated that positioning deviation increased with motor pulse frequency, with a maximum deviation of 1.35 mm at 800 Hz, which remains within operational requirements. The qualification rate of seedling positioning was 100 % under various transmission speeds. The soil damage ratio (sDR) was measured to evaluate picking success, revealing an average successful seedling extraction rate of 95 %. These research findings offer technical support for efficient coordination between seedling conveying and picking in automatic transplanters.

期刊论文 2024-10-01 DOI: 10.1016/j.compag.2024.109311 ISSN: 0168-1699

In order to improve the quality of transplanting devices and solve the problems of the poor effect on soil moisture conservation and more weeds easily growing due to the high mulching-film damage rate with an excessive number of hole openings, we developed a dibble-type transplanting device consisting of a dibble-type transplanting unit, a transplanting disc, and a dibble axis. The ADAMS software Adams2020 (64bit) was used to simulate and analyze the kinematic track of the transplanting device. The results of the analysis show that, when the hole opening of the envelope in the longitudinal dimension was the smallest, the transplanting characteristic coefficient was 1.034, the transplanting angle was 95 degrees, and the transplanting frequency had no influence. With the help of the ANSYS WORKBENCH software Ansys19.2 (64bit), an analysis of the process of the formation of an opening in the mulching film and a mechanical simulation of this process were completed. The results indicate that, when the maximum shear stress of the mulching film was the smallest, the transplanting characteristic coefficient was 1.000, the transplanting frequency was 36 plants center dot min-1, and the transplanting angle was 95 degrees. In addition, the device was tested in a film-breaking experiment on a soil-tank test bench to verify the hole opening in the mulching film. The bench test showed that, when the longitudinal dimension was the smallest, the transplanting characteristic coefficient was 1.034, the transplanting frequency was 36 plants center dot min-1, and the transplanting angle was 95 degrees. When the lateral dimension was the smallest, the transplanting characteristic coefficient was 1.034, the transplanting frequency was 36 plants center dot min-1, and the transplanting angle was 90 degrees. The theoretical analysis, kinematic simulation, and soil-tank test results were consistent, verifying the validity and ensuring the feasibility of the transplanting device. This study provides a reference for the development of transplanting devices.

期刊论文 2024-03-01 DOI: 10.3390/agriculture14030494

The purpose of this study was to determine the optimal operating speeds for a low-speed automated vegetable transplanter that utilized a modified linkage cum hopper-type planting unit. A biodegradable seedling plug-tray feeding mechanism is employed by the transplanter. Using kinematic simulation software, the planter unit's movement was simulated under various operating conditions. The resulting trajectories were compared based on variables like plant spacing, soil intrusion area, soil intrusion perimeter, and horizontal hopper displacement in the soil. It was discovered that the best results occurred at 200, 250, and 300 mm/s and 40, 50, and 60 rpm combinations. Following testing in a soil bin facility, it was discovered that the ideal operating speeds performed well when transplanting pepper seedlings, with measured plant spacing that was nearly identical to the theoretical spacing. While the planting angle in various speed combinations was found to be significantly different, but still within acceptable bounds, the planting depth in each case did not differ statistically. The optimal speed combinations that were chosen resulted in minimal damage to the mulch film. The best speeds for the transplanter were found through this investigation, and these speeds can be used as a foundation for refining the other mechanisms in the transplanter.

期刊论文 2024-01-01 DOI: 10.4081/jae.2024.1569 ISSN: 1974-7071

Global warming in mid-latitude alpine regions results in permafrost thawing, together with greater availability of carbon and nutrients in soils and frequent freeze-thaw cycles. Yet it is unclear how these multifactorial changes will shape the 1 m-deep permafrost microbiome in the future, and how this will in turn modulate microbiallymediated feedbacks between mountain soils and climate (e.g. soil CO2 emissions). To unravel the responses of the alpine permafrost microbiome to in situ warming, we established a three-year experiment in a permafrost monitoring summit in the Alps. Specifically, we simulated conditions of warming by transplanting permafrost soils from a depth of 160 cm either to the active-layer topsoils in the north-facing slope or in the warmer south-facing slope, near the summit. qPCR-based and amplicon sequencing analyses indicated an augmented microbial abundance in the transplanted permafrost, driven by the increase in copiotrophic prokaryotic taxa (e.g. Noviherbaspirillum and Massilia) and metabolically versatile psychrotrophs (e.g. Tundrisphaera and Granulicella); which acclimatized to the changing environment and potentially benefited from substrates released upon thawing. Metabolically restricted Patescibacteria lineages vastly decreased with warming, as reflected in the loss of alpha-diversity in the transplanted soils. Ascomycetous sapro-pathotrophs (e.g. Tetracladium) and a few lichenized fungi (e.g. Aspicilia) expanded in the transplanted permafrost, particularly in soils transplanted to the warmer south-facing slope, replacing basidiomycetous yeasts (e.g. Glaciozyma). The transplantation-induced loosening of microbial association networks in the permafrost could potentially indicate lesser cooperative interactions between neighboring microorganisms. Broader substrate-use microbial activities measured in the transplanted permafrost could relate to altered soil C dynamics. The three-year simulated warming did not, however, enhance heterotrophic respiration, which was limited by the carbon-depleted permafrost conditions. Collectively, our quantitative findings suggest the vulnerability of the alpine permafrost microbiome to warming, which might improve predictions on microbially-modulated transformations of moun-tain soil ecosystems under the future climate. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

期刊论文 2022-02-10 DOI: 10.1016/j.scitotenv.2021.150720 ISSN: 0048-9697

Rising temperatures in the Arctic and the expansion of plants to higher latitudes will significantly alter belowground microbial communities and their activity. Given that microbial communities are major producers of greenhouse gases, understanding the magnitude of microbial responses to warming and increased carbon input to Arctic soils is necessary to improve global climate change models. In this study, active layer and permafrost soils from northern Greenland (81 degrees N) were subjected to increased carbon input, in the form of plant litter, and temperature increase, using a combined field and laboratory approach. In the field experiment, unamended or litter-amended soils were transplanted from the permafrost layer to the top soil layer and incubated for one year, whereas in the laboratory experiment active layer and permafrost soils with or without litter amendment were incubated at 4 degrees C or 15 degrees C for six weeks. Soil microbial communities were evaluated using bacterial 16S and fungal ITS amplicon sequencing and respiration was used as a measure of microbial activity. Litter amendment resulted in similar changes in microbial abundances, diversities and structure of microbial communities, in the field and lab experiments. These changes in microbial communities were likely due to a strong increase in fast-growing bacterial copiotrophic taxa and basidiomycete yeasts. Furthermore, respiration was significantly higher with litter input for both active layer and permafrost soil and with both approaches. Temperature alone had only a small effect on microbial communities, with the exception of the field-incubated permafrost soils, where we observed a shift towards oligotrophic taxa, specifically for bacteria. These results demonstrate that alterations in High Arctic mineral soils may result in predictable shifts in the soil microbiome.

期刊论文 2020-12-01 DOI: 10.1016/j.soilbio.2020.108054 ISSN: 0038-0717
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-10条  共10条,1页