The Atacama Plateau in the Central Andes (28-22 degrees S) is characterised by a dry and cold periglacial tundra due to the high altitude, low precipitation, and high evaporation. Endogenous freshwater sources - e.g.: seasonal streams and lakes, subsurface reservoirs, surface snow/ice patches - are available, though they are highly sensitive to climatic changes. The near surface hydrological network is highly modified by the distribution and seasonal evolution of perennial frozen ground, i.e. permafrost, which is also expected to change in the future. The interplay between permafrost and hydrology, especially in relation to future climate change, is poorly explored. To address this issue, we carry out long-term ground temperature measurement and modelling, snow coverage survey, tritium- and stable isotope analysis of surface waters on the Ojos del Salado Massif, which is representative of high altitude mountains on the Atacama Plateau. According to our results, a highly transient surface hydrological network - lakes, springs and streams - forms during each summer where permafrost is widespread and ground thawing (i.e. active layer) is present (similar to 4900-6500 m a.s.l.). In this system, the water is of meteoric origin and relatively young (<10 years). The development of the network is strongly influenced by the active layer, which plays a crucial role in storing, seeping, and discharging groundwater. However, future permafrost degradation is expected to reduce the seasonal presence of shallow water, and hence, modify groundwater recharge patterns.
Spring low-temperature stress (LTS) has become a major limiting factor for the development of high yield, quality and efficiency in wheat production. It not only affects the function of wheat leaves and the development of spikes but also impacts stem lodging resistance, and may experience elevated risk of stem lodging. This study conducted a field pot experiment to assess the effect of phosphorus fertilizer application mode on wheat stem lodging resistance under spring LTS. Two wheat varieties, Yannong19 (YN19, cold-tolerant variety) and Xinmai26 (XM26, cold-sensitive variety) used as the experiment material. Two phosphorus fertilizer application models including traditional phosphorus application (TPA) and optimized phosphorus application (OPA) were employed. Temperature treatment was conducted at 15 degrees C (CK) and -4 degrees C (LT) in a controlled phytotron. Our results showed that spring LTS decreased the stem wall thickness and internode fullness, and altered stem anatomical structure and chemical composition, resulting in a decrease in wheat stem mechanical strength and lodging resistant index. Compared with TPA, the OPA increased the stem wall thickness and internode fullness. The thickness of the stem mechanic tissue layer and parenchymatous tissue, and the area of the large vascular bundle and small vascular bundle were increased by the OPA, which alleviated the damage to stem cell walls caused by spring LTS. At the same time, the OPA also increased the contents of lignin, cellulose, and soluble sugar, improving the C/N ratio in wheat stem. Due to the improved stem morphological characteristics, anatomical structure, and chemical compositions, the wheat stem exhibited enhanced lodging resistance, which increased the lodging resistant index of the 2nd and 3rd internodes of YN19 and XM26 by 27.27%, 11.63% and 14.15%, 15.73% at the dough stage compared with TPA under spring LTS. Meanwhile, OPA could not only alleviate the yield loss caused by spring LTS, but also increase the grain yield without spring LTS. This study indicated that OPA enhances wheat stem lodging resistance under spring LTS, and would be meaningful and practical for improving wheat resistance to low-temperature stress.
Layers of permafrost developed during the 1950s and 1960s incorporated tritium from the atmosphere that originated from global nuclear weapons testing. In regions underlain by substantial permafrost, this tritium has been effectively trapped in ice since it was deposited and subject to radioactive decay alone, which has substantially lengthened its environmental half-life compared to areas with little or no permafrost where the weapons-test era precipitation has been subject to both decay and hydrodynamic dispersion. The Arctic is warming three times faster than other parts of the world, with northern regions incurring some of the most pronounced effects of climate change, resulting in permafrost degradation. A series of 23 waterbodies across the Canadian sub-Arctic spanning the continuous, discontinuous and isolated patches permafrost zones in northern Manitoba, Northwest Territories and Labrador were sampled. Surface water and groundwater seepage samples were collected from each lake and analyzed for tritium, stable isotopes (delta O-18 and delta H-2) and general water chemistry characteristics. Measured tritium was significantly higher in surface waters (SW) and groundwater seepage (GW) in water bodies located in the sporadic discontinuous (64 +/- 15 T U. in SW and 52 +/- 9 T U. in GW) and extensive discontinuous (53 +/- 7 T U. in SW and 61 +/- 7 T U. in GW) permafrost regions of the Northwest Territories than in regions underlain by continuous permafrost in northern Manitoba (< 12 T U. in both SW and GW) or those within isolated patches of permafrost in Labrador (16 +/- 2 T U. in SW and 21 +/- 4 T U. in GW). The greatest tritium enrichment (up to 128 T U.) was observed in lakes near Jean Marie River in the Mackenzie River valley, a region known to be experiencing extensive permafrost degradation. These results demonstrate significant permafrost degradation in the central Mackenzie River basin and show that tritium is becoming increasingly mobile in the sub-Arctic environment-at concentrations higher than expected-as a result of a warming climate. A better understanding of the cycling of tritium in the environment will improve our understanding of Arctic radioecology under changing environmental conditions.