The production gap between current and attainable yields is highest on Africa's smallholder farms, and some studies indicate that they might not benefit from the yield gains offered by conventional farming. Simultaneously, alternative farming systems like organic provide biodiversity and soil fertility advantages, but their ability to produce sufficient food is still under debate. Additionally, comparative data on the productivity of organic versus conventional in tropical regions are scarce or short-term. We investigated the crop productivity of organic and conventional farming systems using 15 years in two long-term systems comparison trials in Kenya. The trials were established in 2007 at two sites in the Central Highlands of Kenya. At each site, conventional and organic systems were compared at high input levels. The trial involved a three-year crop rotation cycle of maize, vegetables, legumes, and potatoes, repeated five times since its establishment. Management practices were kept similar in the first four rotations and revised in the fifth to improve systems representing best practices. Our results showed that while maize and baby corn had relatively low yield gaps (-13 to +12 %) between organic and conventional systems, cabbage, French beans, and potato had high yield gaps (-50 to-30 %). We attributed this to nutrient limitations and higher pest and disease damage. The yield gap could partially be closed by adopting best practices in the organic system, including system diversification and effective soil fertility, nutrient, and integrated pest management.
Scientific innovation is overturning conventional paradigms of forest, water, and energy cycle interactions. This has implications for our understanding of the principal causal pathways by which tree, forest, and vegetation cover (TFVC) influence local and global warming/cooling. Many identify surface albedo and carbon sequestration as the principal causal pathways by which TFVC affects global warming/cooling. Moving toward the outer latitudes, in particular, where snow cover is more important, surface albedo effects are perceived to overpower carbon sequestration. By raising surface albedo, deforestation is thus predicted to lead to surface cooling, while increasing forest cover is assumed to result in warming. Observational data, however, generally support the opposite conclusion, suggesting surface albedo is poorly understood. Most accept that surface temperatures are influenced by the interplay of surface albedo, incoming shortwave (SW) radiation, and the partitioning of the remaining, post-albedo, SW radiation into latent and sensible heat. However, the extent to which the avoidance of sensible heat formation is first and foremost mediated by the presence (absence) of water and TFVC is not well understood. TFVC both mediates the availability of water on the land surface and drives the potential for latent heat production (evapotranspiration, ET). While latent heat is more directly linked to local than global cooling/warming, it is driven by photosynthesis and carbon sequestration and powers additional cloud formation and top-of-cloud reflectivity, both of which drive global cooling. TFVC loss reduces water storage, precipitation recycling, and downwind rainfall potential, thus driving the reduction of both ET (latent heat) and cloud formation. By reducing latent heat, cloud formation, and precipitation, deforestation thus powers warming (sensible heat formation), which further diminishes TFVC growth (carbon sequestration). Large-scale tree and forest restoration could, therefore, contribute significantly to both global and surface temperature cooling through the principal causal pathways of carbon sequestration and cloud formation. We assess the cooling power of forest cover at both the local and global scales. Our differentiated approach based on the use of multiple diagnostic metrics suggests that surface albedo effects are typically overemphasized at the expense of top-of-cloud reflectivity. Our analysis suggests that carbon sequestration and top-of-cloud reflectivity are the principal drivers of the global cooling power of forests, while evapotranspiration moves energy from the surface into the atmosphere, thereby keeping sensible heat from forming on the land surface. While deforestation brings surface warming, wetland restoration and reforestation bring significant cooling, both at the local and the global scale.image