Soil microbial communities in the Arctic play a critical role in regulating the global carbon (C) cycle. Vast amounts of C are stored in northern high latitude soils, and rising temperatures in the Arctic threaten to thaw permafrost, making relatively inaccessible C sources more available for mineralization by soil microbes. Few studies have characterized how microbial community structure responds to thawing permafrost in the context of varying soil chemistries associated with contrasting tundra landscapes. We subjected active layer and permafrost soils from upland and lowland tundra sites on the North Slope of Alaska to a soil-warming incubation experiment and compared soil bacterial community profiles (obtained by 16S rRNA amplicon sequencing) before and after incubation. The influence of soil composition (characterized by mid-infrared [MIR] spectroscopy) on bacterial community structure and class abundance was analyzed using redundancy and correlation analyses. We found increased abundances of Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes [Sphingobacteriia] post incubation, particularly in permafrost soils. The categorical descriptors site and soil layer had the most explanatory power in our predictive models of bacterial community structure, highlighting the close relationship between soil bacteria and the soil environment. Specific soil chemical attributes characterizing the soil environments that were found to be the best predictors included MIR spectral bands associated with inorganic C, silicates, amide II (C=N stretch), and carboxylics (C-O stretch), and MIR peak ratios representing C substrate quality. Overall, these results further characterize soil bacterial community shifts that may occur as frozen environments with limited access to C sources, as is found in undisturbed permafrost, transition to warmer and more C-available environments, as is predicted in thawing permafrost due to climate change.
Vast amounts of soil organic matter (SOM) have been preserved in arctic soils over millennia time scales due to the limiting effects of cold and wet environments on decomposer activity. With the increase in high latitude warming due to climate change, the potential decomposability of this SOM needs to be assessed. In this study, we investigated the capability of mid infrared (MIR) spectroscopy to quickly predict soil carbon and nitrogen concentrations and carbon (C) mineralized during short-term incubations of tundra soils. Active layer and upper permafrost soils collected from four tundra sites on the North Slope of Alaska were incubated at 1, 4, 8 and 16 C for 60 days. All incubated soils were scanned to obtain the MIR spectra and analyzed for total organic carbon (TOC) and total nitrogen (TN) concentrations, and salt-extractable organic matter carbon (SEOM). Partial least square regression (PLSR) models, constructed using the MIR spectral data for all soils, were excellent predictors of soil TOC and TN concentrations and good predictors of mineralized C for these tundra soils. We explored whether we could improve the prediction of mineralized C by splitting the soils into the groups defined by the influential factors and thresholds identified in a principal components analysis: (1) TOC > 10%, (2) TOC 0.6%, (5) acidic tundra, and (6) non-acidic tundra. The best PLSR mineralization models were found for soils with TOC < 10% and TN < 0.6%. Analysis of the PLSR loadings and beta coefficients from these models indicated a small number of influential spectral bands. These bands were associated with clay content, phenolics, aliphatics, silicates, carboxylic acids, and amides. Our results suggest that MIR could serve as a useful tool for quickly and reasonably estimating the initial decomposability of tundra soils, particularly for mineral soils and the mixed organic-mineral horizons of cryoturbated soils.