The migration of fine particles under hydraulic scenarios is a primary cause of deterioration and even failure in many geotechnical structures. The particle migration test of the two-layer structure of the gravel and sandy-silty mixture under cyclic loading was performed to analyse the properties of particle migration under cyclic loading-hydraulic coupling. The results show that the variation in mud turbidity is influenced by both the fines content and the effective particle size. The particle size distribution of the sandy silt sample exhibits significant changes posttest. The upper layer of the sandy silt sample experiences the most substantial loss, while the middle layer shows a negative comprehensive loss, and the lower layer displays a positive loss. This research enhances our understanding of particle migration mechanisms in saturated soils subjected to cyclic loading, providing crucial insights for the stability assessment of railway substructures.
Arctic fjords are hotspots of marine carbon burial, with diatoms playing an essential role in the biological carbon pump. Under the background of global warming, the proportion of diatoms in total phytoplankton communities has been declining in many high-latitude fjords due to increased turbidity and oligotrophication resulting from glacier melting. However, due to the habitat heterogeneity among Svalbard fjords, diatom responses to glacier melting are also expected to be complex, which will further lead to changes in the biological carbon pumping and carbon sequestration. To address the complexity, three short sediment cores were collected from three contrasting fjords in Svalbard (Krossfjorden, Kongsfjorden, Gronfjorden), recording the history of fjord changes in recent decades during significant glacier melting. The amino acid molecular indicators in cores K4 and KF1 suggested similar organic matter degradation states between these two sites. In contrast to the turbid Kongsfjorden and Gronfjorden, preserved fucoxanthin in Krossfjorden indicated a continuous increase in diatoms since the mid-1980s, corresponding to a 59 % increase in biological carbon pumping, as quantified by the delta C-13 of sedimentary organic carbon. The increasing biological carbon pumping in Krossfjorden is further attributed to its hard rock types in the glacier basin, compared to Kongsfjorden and Gronfjorden, which are instead covered by soft rocks, as confirmed by a one-dimensional model. Given the distribution of rock types among basins in Svalbard, we extrapolate our findings and propose that approximately one-fifth of Svalbard's fjords, especially those with hard rock basins and persistent marine-terminated glaciers, still have the potential for an increase in diatom fractions and efficient biological carbon pumping. Our findings reveal the complexity of fjord phytoplankton responses and biological carbon pumping to increasing glacier melting, and underscore the necessity of modifying Arctic marine carbon feedback to climate change based on results from fjords underlain by hard rocks.
Anthropogenic activities such as the over-application of road deicers are causing an increase in the concentration of salts in historically fresh waters. Experimental and field investigations demonstrate that freshwater salinization disrupts ecosystem functions and services, causing the death of freshwater organisms and changes to nutrient conditions. Wetland habitats are one system negatively affected by salt pollution, including ephemeral wetlands (vernal pools) that fill with salt-polluted water after snowmelt. In urbanized areas, the degradation of these ecosystems could result in irreversible ecological damage including reduced water quality and a reduction in biodiversity. To investigate the effects of freshwater salinization on vernal pool communities, we exposed soils from vernal pools to water containing no salt (control), or four concentrations of three salts standardized by chloride concentration (50 mg Cl- L-1, 100 mg Cl- L-1, 200 mg Cl- L-1, and 400 mg Cl- L-1; magnesium chloride, calcium chloride, and sodium chloride). The results of this experiment suggest that emerging zooplankton communities in vernal pools are sensitive to low concentrations of salt pollution, and that alternative salts such as magnesium chloride and calcium chloride are more toxic than sodium chloride. We did not find positive or negative changes in the abundance of eukaryotic phytoplankton but did find negative effects of salt on cyanobacteria abundance, possibly due to corresponding reductions in turbidity which might be needed as a fixation site for cyanobacteria to form heterocysts. Finally, we found that salt pollution likely caused flocculation of Dissolved Organic Matter (DOM), resulting in reduced concentrations of DOM which could alter the buffering capacity of freshwater systems, light attenuation, and the populations of planktonic heterotrophs.
On February 6, 2023, two destructive earthquakes of 7.7 MW and 7.6 MW occurred in Pazarcik (Kahramanmaras) and Elbistan (Kahramanmaras) at 04:17 and 13:24 hours, respectively. These earthquakes caused a surface rupture with a total length of 450 km in the region with an average displacement of 3 m between the Arabian and Anatolian plates. This study was conducted to investigate the physical deformation of the aquifer system and the current water quality characteristics in the affected region utilizing field observations and on-site analysis of water sources and tap water. The study revealed significant physical changes in the karstic springs and groundwa-ter wells, including turbidity discharges from all karstic springs due to the limestone-covered terra rosa soils in the region, destruction of groundwater wells near the coastal alluvial aquifer due to liquification, significant intrusion of sea water due to settlements caused by liquefaction in the alluvial aquifer, presence of microbiological pathogens carried by particles creating turbidity in the water sources, and presence of microbiological pathogens in some tap waters due to contamination by pollutants resulting from damage to the water and sewerage networks. These preliminary findings suggest that the earthquake-induced shaking and physical deformation impacted the quality of groundwater sources and tap water in the region.
In order to assess the impact of seasonal active layer thaw and thermokarst on river flow and turbidity, a gauging station was installed near the mouth of the Sheldrake River in the discontinuous permafrost zone of northern Quebec. The station provided 5 years of water level data and 3 years of turbidity data. The hydrological data for the river showed the usual high water stage occurring at spring snowmelt, with smaller peaks related to rain events in summer. Larger and longer turbidity peaks also occurred in summer in response to warm air temperature spells, suggesting that a large part of the annual suspension load was carried during midsummer turbidity peaks. Supported by geomorphological observations across the catchment area, the most plausible interpretation is that the rapid thawing of the active layer during warm conditions in July led to the activation of frostboils and triggered landslides throughout the river catchment, thus increasing soil erosion and raising sediment delivery into the hydrological network. These results indicate that maximum sediment discharge in a thermokarst-affected region may be predominantly driven by the rate of summer thawing and associated activation of erosion features in the catchment.