Accurately predicting the setup of jacked piles in marine soft clays is crucial for effective construction, load- bearing design, and maintenance of offshore foundations. This paper integrated UMAT subroutines into the ABAQUS platform using two numerical integration methods: the cutting plane algorithm (CPA) and the NewtonRaphson iterative algorithm (NRIA), to simulate the entire life cycle of jacked piles in marine soft clays. The study incorporates the advanced elastoplastic constitutive model (S-CLAY1S) and the elastoviscoplastic constitutive model (ANICREEP), addressing soil fabric anisotropy, structural effects, and, specifically, soil creep effects in the ANICREEP model. A two-dimensional axisymmetric model is established for jacked piles in marine soft clays, involving unloading and consolidation stages, followed by static load tests on test piles at various post- installation rest periods to assess their time-dependent bearing performance. Finite element modeling enables simulations of field and laboratory pile tests, validating models against measurements. Parameter analysis includes variations in excess pore water pressure (EPWP), ultimate skin friction resistance, and pile bearing capacity in both soil models, examining the impact of initial soil structure ratio on pile performance. Key findings reveal differences in EPWP dissipation rates and long-term bearing capacity evolution between elastoplastic and elastoviscoplastic soils, highlighting the ANICREEP model's capability to capture both short-term and creep- induced long-term effects. Integrating complex soil mechanics into ABAQUS enhances the ability to predict and optimize jacked pile performance in various geotechnical engineering applications.
The influence of modern soil ameliorants such as anionic potassium humates (PHums) and cationic poly(diallyldimethylammonium chloride) (PDADMAC) as well as their interpolymer complexes (IPCs) on rheological behavior of water-saturated kaolinite was studied. Modification of kaolinite with anionic biologically active and bio-stimulating PHums was shown to result in a decrease of storage modulus G(0)' and shear stress amplitude tau(0) corresponding to linear viscoelasticity region as well as storage modulus G' cross and shear stress amplitude tau cross at crossover point by 0.5 - 1.0 order of magnitude. Modification of the clay with cationic PDADMAC was accompanied by the opposite effect, that is, an increase in the above rheological characteristics by 1.5 - 2.0 orders of magnitude. PDADMAC/PHums IPCs with the molar ratio of cationic and anionic groups in the range 0.1 - 10 demonstrated the influence on the rheological parameters in the same manner as individual PDADMAC. This result was considered as the original procedure to provide simultaneous addition of stabilizing PDADMAC and biologically active PHums. In this case the reinforcing action of PDADMAC on the kaolinite is fully realized and the weakening action of PHums is fully suppressed. For individual polymers, the results are discussed in terms of kaolinite structural transformations caused by the interaction of charged macromolecules with negatively charged clay particles. For IPCs/kaolinite samples, rheological behavior was attributed to the exchange reactions between IPCs and clay particles. The data obtained are important for predicting the mechanical properties of wet clay soils modified with polymers and IPCs, as well as optimizing methods for introducing bio-stimulating and anti-erosion polymer additives into soils.
Thaumatin-like proteins (TLPs), including osmotins, are multifunctional proteins related to plant biotic and abiotic stress responses. TLPs are often present as large multigene families. Tetragonia tetragonoides (Pall.) Kuntze (Aizoaceae, 2n = 2x = 32), a vegetable used in both food and medicine, is a halophyte that is widely distributed in the coastal areas of the tropics and subtropics. Saline-alkaline soils and drought are two major abiotic stress factors significantly affecting the distribution of tropical coastal plants. The expression of stress resistance genes would help to alleviate the cellular damage caused by abiotic stress factors such as high temperature, salinity-alkalinity, and drought. This study aimed to better understand the functions of TLPs in the natural ecological adaptability of T. tetragonoides to harsh habitats. In the present study, we used bioinformatics approaches to identify 37 TtTLP genes as gene family members in the T. tetragonoides genome, with the purpose of understanding their roles in different developmental processes and the adaptation to harsh growth conditions in tropical coral regions. All of the TtTLPs were irregularly distributed across 32 chromosomes, and these gene family members were examined for conserved motifs of their coding proteins and gene structure. Expression analysis based on RNA sequencing and subsequent qRT-PCR showed that the transcripts of some TtTLPs were decreased or accumulated with tissue specificity, and under environmental stress challenges, multiple TtTLPs exhibited changeable expression patterns at short (2 h), long (48 h), or both stages. The expression pattern changes in TtTLPs provided a more comprehensive overview of this gene family being involved in multiple abiotic stress responses. Furthermore, several TtTLP genes were cloned and functionally identified using the yeast expression system. These findings not only increase our understanding of the role that TLPs play in mediating halophyte adaptation to extreme environments but also improve our knowledge of plant TLP evolution. This study also provides a basis and reference for future research on the roles of plant TLPs in stress tolerance and ecological environment suitability.
Stem mustard, the main raw material for pickled mustard tuber, is widely planted in Chongqing, China, and is an important local cash crop. Under the working conditions of sticky and wet soil in the Chongqing area, conventional furrow seeding has problems such as soil sticking to the furrow opener, poor mulching effect, etc. In this regard, this paper proposes the use of non-contact, soil-based, pneumatic shot seeding, in which seeds are shot into the soil to a predetermined depth by a high-speed air stream. The diameter of stem mustard seeds was found to be 1.33 mm, with a spherical rate of 95.32% using physical and mechanical properties. The high-speed camera test was used to determine the air pressure at the appropriate sowing depth, and the seed entry process was simulated by EDEM 2021 software, which analysed the movement process of the seed after entering the soil, and the structure of the seeder was designed based on the resulting test data. The structural parameters of the shot seeding device were analysed by a hydrodynamic simulation using Fluent 2022 R1 software and the following results were obtained: an outlet pipe diameter DC of 2 mm, mixing zone length H of 10 mm, mixing zone inlet diameter D of 15 mm, and steady-state gas flow rate of 80 m/s. Simulation seeding verification was conducted on the final determined structural parameters of the seeding device, and the simulation results showed that the seed velocity could reach 32.3 m/s. In actual experiments, it was found that when the vertical velocity of the seeds was greater than or equal to 26.59 m/s, the seeds could be completely and stably seeded into the soil. Therefore, the designed seeding device can meet the conditions of actual seeding experiments. In conclusion, this research offers a practical guideline for the rapid and precise sowing of stem mustard.
This article a synthesis of humic acid with the obtaining of potassium humate based on coal waste from the Lenger deposit. Accumulated industrial waste heavily pollutes the environment and has a direct impact on all living things. The accumulation of waste in landfills increases the pollution level of the atmosphere, soil, groundwater, and surface water, destroys the functioning of ecosystems, and damages agriculture and construction. A sieve analysis was carried out to study the fine fractions of coal waste, and a scanning electron microscope analysis was performed to study the mineralogical, structural state and X-ray chemical phase composition. The chemical composition of coal waste was studied using differential thermal analysis during heat treatment. The optimal parameters of the process for obtaining humic acids are established, and the results of experimental work are presented. The results are confirmed by mathematical planning of the experiment using the method of orthogonal plan of the second order. The mathematical planning results were tested according to the Student and Fischer criteria. Based on the conducted studies, it was identified that the degree of extraction of humic acid reaches up to 95.90% in terms of the organic phase, and the concentration of humic acid is 49.13%. From the humic acids obtained using potassium hydroxide, potassium humate was synthesized. The potassium humate obtained in its composition has fertilizer properties. Therefore, the obtained potassium humate will be used for the production of humic fertilizers to improve soil fertility and crop yields. The synthesis of humic acids with the production of potassium humate is aimed at reducing the accumulated industrial waste, which in turn allows you to regulate and improve the ecological situation and green ecology in the region.
Offshore wind turbines (OWTs) are affected by wind, wave, and current during their service life, which lead to the substructures undergoing combined effects of complex lateral loads and local scour. This phenomenon poses a significant challenge to the bearing capacity and cyclic responses of the widely used rigid monopiles for OWTs. This study develops three-dimensional numerical model to investigate the behavior of a rigid monopile subjected to lateral monotonic and cyclic loads, considering the stress history alteration induced by local scour. The hysteresis and plasticity accumulation of soils are captured by a bounding surface model. An accurate and concise semi-implicit stress integration scheme is creatively proposed to effectively incorporate this advanced constitutive model into the finite element (FE) software. The numerical model is verified by comparing FE results with centrifuge test results. Subsequently, the key factors such as cumulative deformation characteristics and bending moments distribution are investigated under different scour and cyclic loading conditions. The results indicate that with the facilitation of proposed semi-implicit scheme, the bounding surface model is capable of capturing the deformation pattern and cumulative deformation behavior of laterally loaded rigid monopile, and the cyclic responses of the monopile are significantly affected by the local scour.
为了使广义西原模型可以描述冻土的各个变形阶段,用非线性牛顿体替代线性牛顿体进行改进,采用类比的方法将冻土单轴应力状态下的本构方程推广到三维状态;在ABAQUS中利用二次开发平台,编写了改进广义西原模型的UMAT子程序,并在单轴、三轴蠕变条件下进行检验。单轴蠕变的数值解与解析解计算结果十分吻合,两淮地区深部冻结粘土三轴蠕变试验模拟值与实验值相符。表明改进的广义西原模型可以很好地描述冻土蠕变变形特征,包括加速蠕变阶段,UMAT子程序可以用于冻结法施工工程数值模拟。