Gully erosion on agricultural land severely damages land resources and affects agricultural production. Topographic features, tillage methods, and roads are major elements constituting the farmland landscape, but the effect of their distribution in the farmland on the gully erosion is still unclear. This study examined the long-term impacts of changes in the farmland environment and climate change on gully erosion over a long temporal scale of nearly 60 years, the results showed that farmland reclamation over the past 60 years had led to a 2324.2 % increase in gully length density and a 3563.3 % increase in gully area density. The increase in annual rainfall amount and the frequency of extreme rainstorms had led to a rapid increase of gully erosion intensity in the last decade, with an average development rate in length density and area density of 61.5 m km- 2 and 778.7 m2 km- 2, respectively. Farmlands with slope aspects between 135 and 270 degrees were more prone to gully erosion, which was related to the redistribution of snow on hillslopes caused by prevailing wind directions. Tillage methods and roads simultaneously affect gully erosion, with newly formed gullies located in farmlands and roadsides accounting for 63.0 % and 29.8 %. Gullies in regions where the angle between furrows and unpaved roads exceeded 70 degrees accounted for 61.1 % of the total roadside gullies. Over the last decade, the annual average increase of gully length and area was 9.8 m yr-1 and 246.1 m2 yr-1. The development rate of gully area was significantly correlated with the drainage area.
Unpaved roads are essential for transportation infrastructure, particularly for forest industry. Traditionally, unpaved roads are composed of layers using local soils. Poor local soils need to be replaced with gravel, crushed aggregate, or amixture of materials. Due to traffic and weather conditions, unpaved roads require frequent maintenance and repair. To reduce the amount of quality materials and the frequency of maintenance operations, reinforcements can be used (synthetic or natural). This paper focussed on the behaviour of a fine soil reinforced with natural fibres from the forest value chain (pine needles), to assess their use on unpaved forest roads. Cyclic CBR tests were carried out to assess the resilient response of the soil (unreinforced and reinforced); the tests included initial monotonic loading, followed by cyclic loading. The force-penetration response and CBR value improved with the inclusion of pine needles; the best response corresponded to a percentage of incorporation of 1% (mass). For the cyclic loading phase, the permanent displacement decreased with the number of cycles, approaching a resilient response. The reinforcement with pine needles led to an improved elastic response, represented by an equivalent stiffness modulus. The best behaviour was, again, obtained for a percentage of incorporation of 1% (mass). The addition of fibres led to reduced displacements during the test, relatively to the unreinforced soil. The results showed that for unpaved forest roads, where the investment in soil characterisation is often very limited, cyclic CBR tests can be a promising approach in obtaining design parameters.
The problem of unpaved road erosion is prominent in the Loess Plateau hilly and gully region. Unpaved roads contribute substantially to watershed sediment due to their high soil bulk density, low infiltration rates and extensive network. In this study, a field investigation was conducted on typical unpaved roads within a typical watershed in this region, focusing on assessing the damage state, annual soil loss and the factors influencing erosion in a comparatively wet year. The results showed that the soil erosion from unpaved roads was very severe, with an annual erosion intensity of 470 t hm(-2), following three heavy rain events and two rainstorm events in the summer of 2022. The main unpaved roads (MUR) suffered the most severe road erosion, with 22.2 % of road segments experiencing severe erosion with classical gullies. The erosion gullies on the road had an average depth of 16.1 cm and an average width of 36.5 cm, with the widest being 146.0 cm and the deepest being 174.0 cm. The road erosion intensity was significantly related to drainage area, road area, road length and coverage. Road erosion reduced significantly when the land use in the drainage areas of the road was covered with shrub or grass, or road surface was covered with grass or gravel. Our findings offer valuable insights for road construction and erosion prevention in similar terrains.
Erosion is the main cause of damage to unpaved roads. This study utilized rainfall simulators to quantify erosion on unpaved roads, controlling variables such as rainfall intensity and slope. A laboratory model of an unpaved road was utilized to evaluate soil loss in an experimental setup. A total of 72 tests were conducted to compare simulated conditions on unpaved roads for three soil types with three slope variations, and eight rainfall intensities. The impact of each variable (soil type, slope, and rainfall intensity) on soil loss was analyzed for 30-minute rainfall events. Analysis of variance (ANOVA) was employed to assess soil erosion response to terrain slope for the three soil types, revealing statistical differences in soil loss between low slopes (2%) and steep slopes (7%) with p-values of .04 (sandy soil), .00007 (sandy silt soil), and .00008 (loam silt soil). Correlation analysis demonstrated a strong relationship between rainfall intensity and soil loss (R2 = .76) for sandy soil and sandy silt soil. Analysis of covariance (ANCOVA) indicated a linear relationship between soil loss and rainfall intensity, with significant differences (p < .05). The findings suggest that soil loss on unpaved roads is positively correlated with slope and rainfall intensity. However, this relationship is not always linear; sandy soil exhibited a nonlinear relationship, especially with high rainfall intensities, whereas sandy silt soil showed a linear relationship with evaluated rain intensities. The type of soil influences erosion process, with higher erosion rates observed in sandy silt soils compared to loam silt soils. This paper analyzed the factors essential for addressing erosion on unpaved roads, identifying key elements to minimize soil loss.