共检索到 25

Glaciers provide multiple ecosystem services (ES) to human society. Due to the continued global warming, the valuation of glacier ES is of urgent importance because this knowledge can support the protection of glaciers. However, a systematic valuation of glacier ES is still lacking, particularly from the perspective of ES contributors. In this study, we introduce the concept of emergy to establish a methodological framework for accounting glacier ES values, and take the Tibetan Plateau (TP) as a case study to comprehensively evaluate the spatiotemporal characteristics of glacier ES during the early 21st century. The results show that the total glacier ES values on the TP increased from 2.36E+24 sej/yr in the 2000s to 2.40E+24 sej/yr in the 2010s, with an overall growth rate of 1.6%. The values of the various services in the 2010s are ranked in descending order: climate regulation (1.59E+24 sej/yr, 66.1%), runoff regulation (4.40E+23 sej/yr, 18.4%), hydropower generation (1.88E+23 sej/ yr, 7.8%). Significantly higher glacier ES values were recorded in the marginal TP than in the endorheic area. With the exception of climate regulation and carbon sequestration, all other service values increased during the study period, partially cultural services, which have experienced rapid growth in tandem with social development. The results of this study will help establish the methodological basis for the assessment of regional and global glacier ES, as well as a scientific basis for the regional protection of glacier resources.

期刊论文 2025-02-01 DOI: 10.1016/j.jenvman.2024.123966 ISSN: 0301-4797

Extreme weather events are increasingly recognized as major stress factors for forest ecosystems, causing both immediate and long-term effects. This study focuses on the impacts experienced by the forests of Valdisotto, Valfurva, and Sondalo (28% of the total area is covered by forests) in Upper Valtellina (Italy) due to the Vaia storm that occurred in October 2018. To define the immediate impacts of Vaia, we assess the economic value of forest ecosystem services (ESs), particularly those provided by timber production and carbon sequestration, pre- and post-Vaia and during the emergency period. We used the market price method to assess the economic values of timber production and carbon sequestration, as these are considered to be marketable goods. Based on data processed from Sentinel-2 satellite images (with a spatial resolution of 10 m), our results show that, despite the reduction in forest area (-2.02%) and timber stock (-2.38%), the economic value of the timber production increased after Vaia due to higher timber prices (i.e., from a total of 124.97 million to 130.72 million). However, considering the whole emergency period (2019-2020), the total losses are equal to 5.10 million for Valdisotto, 0.32 million for Valfurva, and 0.43 million for Sondalo. Instead, an economic loss of 2.88% is experienced for carbon sequestration, with Valdisotto being the more affected municipality (-4.48% of the pre-Vaia economic value). In terms of long-term impacts, we discuss the enhanced impacts due to the spread of the bark beetle Ips typopgraphus.

期刊论文 2024-10-01 DOI: 10.3390/rs16193692

The ecosystem services of the Qinghai-Tibet Plateau have been hot topics in recent decades due to their unique value, and the region's sensitivity to climate change and human activities is considered to be of major importance. However, few studies have focused on the variations of ecosystem services in response to traffic activities and climate change. This study applied different ecosystem service models, along with the buffer analysis, local correlation and regression analysis to quantitatively analyze the spatiotemporal variations of carbon sequestration, habitat quality, and soil reten-tion, further detected the climatic and traffic influences in the transport corridor region of the Qinghai-Tibet Plateau from 2000 to 2020. The obtained results showed the following: (1) The carbon sequestration and soil retention in-creased over time, while the habitat quality decreased during the railway construction period; in addition, the varia-tions of ecosystem services between the two periods exhibited substantial spatial differences. (2) The distance trends of ecosystem service variations were similar for the railway and the highway corridors, and the positive ecosys-tem service trends were mainly observed within 2.5 km and 2 km of railway and highway corridors, respectively. (3) The impacts of climatic factors on ecosystem services were predominantly positive; however, temperature and pre-cipitation displayed contrasting distance trends in their impacts on carbon sequestration. (4) The types of frozen ground and locations away from the railway or highway were the combined factors affecting the ecosystem services, among which carbon sequestration was negatively influenced by the distance from the highway in the continuous permafrost areas. It can be speculated that rising temperatures caused by climate change may intensify the decline of carbon sequestration in the continuous permafrost areas. This study provides guidance on ecological protection strategies for future expressway construction projects.

期刊论文 2023-08-10 DOI: 10.1016/j.scitotenv.2023.163961 ISSN: 0048-9697

As an important component of the climate system, permafrost responds significantly to climate change, and its impact on the ecosystem cannot be ignored. In this study, we analyzed the temporal and spatial variation trends of the normalized difference vegetation index (NDVI) in Arctic permafrost regions and revealed the correlation between the active-layer thickness (ALT), soil temperature, and NDVI change. Using the partial correlation method, we assessed the ecological regulation service of permafrost to the ecosystem. The results showed that both the average annual maximum and summer NDVI values in the Arctic region followed a significant increasing trend from 1982 to 2015. The average correlation coefficient (ACC) between Arctic NDVI and ALT was 0.35, followed by the ACC (0.33) between NDVI and soil temperature at 7-28 cm depth, and had a lower ACC (0.31) at 0-7 cm ALT. When the precipitation and snow water equivalent (SWE) remained unchanged, the partial correlation between NDVI and ALT was 0.711, which was a significant positive correlation. It also showed that permafrost degradation was the dominant factor controlling Arctic NDVI increase, whereas precipitation and SWE had little effect. The study revealed the impact of permafrost on NDVI change, deepened our understanding of the importance of permafrost degradation for ecosystem services, and effectively filled the gap that tundra ecosystem services value has been ignored in the global ecological service value assessment.

期刊论文 2023-08-01 DOI: http://dx.doi.org/10.1016/j.catena.2023.107209 ISSN: 0341-8162

As an important component of the climate system, permafrost responds significantly to climate change, and its impact on the ecosystem cannot be ignored. In this study, we analyzed the temporal and spatial variation trends of the normalized difference vegetation index (NDVI) in Arctic permafrost regions and revealed the correlation between the active-layer thickness (ALT), soil temperature, and NDVI change. Using the partial correlation method, we assessed the ecological regulation service of permafrost to the ecosystem. The results showed that both the average annual maximum and summer NDVI values in the Arctic region followed a significant increasing trend from 1982 to 2015. The average correlation coefficient (ACC) between Arctic NDVI and ALT was 0.35, followed by the ACC (0.33) between NDVI and soil temperature at 7-28 cm depth, and had a lower ACC (0.31) at 0-7 cm ALT. When the precipitation and snow water equivalent (SWE) remained unchanged, the partial correlation between NDVI and ALT was 0.711, which was a significant positive correlation. It also showed that permafrost degradation was the dominant factor controlling Arctic NDVI increase, whereas precipitation and SWE had little effect. The study revealed the impact of permafrost on NDVI change, deepened our understanding of the importance of permafrost degradation for ecosystem services, and effectively filled the gap that tundra ecosystem services value has been ignored in the global ecological service value assessment.

期刊论文 2023-08-01 DOI: 10.1016/j.catena.2023.107209 ISSN: 0341-8162

Polar ecosystems are the most important storage and source of climatically active gases. Currently, natural biogeochemical processes of organic matter circulation in the soil-atmosphere system are disturbed in urban ecosystems of the cryolithozone. Urbanized ecosystems in the Arctic are extremely under-investigated in terms of their functions in regulating the cycle of climatically active gases. The role of urban soils and soil-like bodies in the sequestration and stabilization of organic matter is of particular interest. The percentage of gravimetric concentrations of organic matter in Arctic urban soils are almost always determined by the method of dichromate oxidation and are subject to extreme variability (from tenths of a percent to more than 90% in man-made soil formations), but the average carbon content in the surface soil horizons can be estimated at 5-7%. The surface humus-accumulative horizons are represented by a variety of morphological forms with the content of organic matter of various origins. The work also focuses on those forms of organic matter, the content of which is extremely small, but very important for the biogeochemical functioning of soils-polycyclic aromatic hydrocarbons and components of petroleum products, as well as labile forms of soil organic matter. We recommend that further studies of the organic matter system be conducted in urbanized areas since the carbon cycle there is severely disrupted, as well as carbon flows. The urbanization and industrialization processes in the Arctic are progressing, which could lead to a radical transformation of carbon ecosystem services.

期刊论文 2023-06-01 DOI: 10.3390/atmos14060997

The Tarim River, the largest inland river in China, sits in the Tarim River Basin (TRB), which is an arid area with the ecosystem primarily sustained by water from melting snow and glaciers in the headstream area. To evaluate the pressures of natural disasters in this climate-change-sensitive basin, this study projected flash droughts in the headstream area of the TRB. We used the variable infiltration capacity (VIC) model to describe the hydrological processes of the study area, Markov chain Monte Carlo to quantify the parameter uncertainty of the VIC model. Ten downscaled general circulation models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) were used to drive the VIC model, and the standardized evaporative stress ratio was applied to identify flash droughts. The results demonstrated that the VIC model after Bayesian parameters uncertainty analysis can efficiently describe the hydrological processes of the study area. In the future (2021-2100), compared with the plain region, the alpine region has higher flash drought frequency and intensity. Compared with the historical period (1961-2014), the frequency, duration, and intensity of flash droughts tend to increase throughout the study area, especially for the alpine area. Moreover, based on variance decomposition, CMIP6 model is the most important uncertainty source for flash drought projection, followed by the shared socioeconomic pathway of climate change scenario and VIC model parameters.

期刊论文 2023-03-27 DOI: 10.1029/2022JD037634 ISSN: 2169-897X

Alpine ecosystems play an important role in maintaining carbon sequestration, water balance, ecological security, biodiversity and human well-being. However, climate change and high-intensity human activities lead to the continuous degradation of vulnerable alpine ecosystems. Based on this, we reveal trends in ecosystem change in the Qilian Mountains of China on a 40-year scale and identify the primary driving factors of change in alpine ecosystems from the perspective of ecosystem service value (ESV) change, providing a more comprehensive picture of the interactions between human society and natural ecosystem. The results showed that more than 55 % of ecosystem types changed from 1980 to 2018, with forests, grasslands, glaciers and bare land being the most vulnerable ecosystems to disturbance, and forest and grassland ecosystems having significant ESV potential (43.99 % and 29.57 %, respectively). However, significant land use and land cover (LULC) changes over the last decade have led to a reduction in ESV stability in alpine ecosystems, where human activities have a more significant impact on ESV of sparse woodland, shrubland and grassland ecosystem at 2800-4000 m. The temperature rise had a more noticeable impact on the ESV of glaciers, alpine meadows and bare land ecosystems at 4000-5500 m. In the long terms, climate change and population growth will threaten the restoration and management of alpine ecosystems. Different ecological development strategies need to be adopted along the altitude, and the establishment of cross regional horizontal ecological compensation mechanism should be accelerated to promote the sustainable development of ecology and people's livelihood in mountainous areas. The results of this study will provide relevant theoretical basis and reference for decision makers, and provide a model for scientific management and sustainable development of alpine ecosystem resources worldwide.

期刊论文 2023-02-01 DOI: 10.1016/j.ecolind.2023.109893 ISSN: 1470-160X

Global warming potentially increases precipitation and intensifies water exchange, thereby accelerating the hydrological cycle. The Tibetan Plateau (TP) is an Asian water tower in which the water budget varies and its anomaly exerts stress on resource availability. Few studies have quantified long-term water budgets across TP owing to scarcity of ground-based observations and uncertainties in remote sensing data. In this study, water budget components (i.e., precipitation, glacial melting [GM], evapotranspiration [ET], runoff, and soil moisture [SM] state) in TP are synthetically estimated for the past three decades. The water budget estimation benefits from a GM-coupled hydrological ensemble modeling, which is forced by nine precipitation products with seven from satellite methods. The results show that the ensemble modeling effectively captures the dynamics of runoff, ET, and terrestrial water storage. The long-term average annual water input (sum of precipitation and GM) was approximately 438 mm, with similar to 4 % contribution from GM, for which the annual ET and runoff take away was approximately 263 and 173 mm, respectively. From 1984 to 2015, the four water fluxes significantly increased with varying rates (2.3 mm/yr, precipitation; 0.9 mm/yr, GM; 1.5 mm/yr, ET; 1.1 mm/yr, runoff), which suggested an accelerating hydrological cycle. Particularly, increasing GM (similar to 5.8 mm/yr) in the Nyainqentanglha Mountains in southern TP induced high-yield runoff (>800 mm). These estimations aid in yielding robust solutions for water management in TP and neighboring regions. The accelerated hydrological cycle implies potential flooding risk and vulnerability of the hydrological system under climate change.

期刊论文 2022-12-01 DOI: 10.1016/j.jhydrol.2022.128710 ISSN: 0022-1694

This study investigates the impacts of climate change on the hydrology and soil thermal regime of 10 sub-arctic watersheds (northern Manitoba, Canada) using the Variable Infiltration Capacity (VIC) model. We utilize statistically downscaled and biascorrected forcing datasets based on 17 general circulation model (GCM) - representative concentration pathways (RCPs) scenarios from phase 5 of the Coupled Model Intercomparison Project (CMIP5) to run the VIC model for three 30-year periods: a historical baseline (1981-2010: 1990s), and future projections (2021-2050: 2030s and 2041-2070: 2050s), under RCPs 4.5 and 8.5. Future warming increases the average soil column temperature by similar to 2.2 C in the 2050s and further analyses of soil temperature trends at three different depths show the most pronounced warming in the top soil layer (1.6 degrees C 30-year(-1) in the 2050s). Trend estimates of mean annual frozen soil moisture fraction in the soil column show considerable changes from 0.02 30-year(-1) (1990s) to 0.11 30-year(-1) (2050s) across the study area. Soil column water residence time decreases significantly (by 5 years) during the 2050s when compared with the 1990s as soil thawing intensifies the infiltration process thereby contributing to faster conversion to baseflow. Future warming results in 40%-50% more baseflow by the 2050s, where it increases substantially by 19.7% and 46.3% during the 2030s and 2050s, respectively. These results provide crucial information on the potential future impacts of warming soil temperatures on the hydrology of sub-arctic watersheds in north-central Canada and similar hydro-climatic regimes.

期刊论文 2022-11-01 DOI: 10.1002/hyp.14748 ISSN: 0885-6087
  • 首页
  • 1
  • 2
  • 3
  • 末页
  • 跳转
当前展示1-10条  共25条,3页