Freezing and thawing indices (FI and TI) are commonly used as indicators for climate change assessment and permafrost extent estimation in cold regions. In this study, based on the meteorological daily data (1978-2017) among 34 meteorological stations in Tibet, the temperature in space has been interpolated and FI and TI have been calculated. Finally, spatiotemporal variations have been analyzed and the permafrost area has been estimated. The results showed the mean annual of FI and TI in Tibet are 1241.36 and 1290.22 degrees C.day, respectively. A significant downward trend in freezing index (FI) and an upward trend in thawing index (TI) have been reported in the time series, in against, analyzing the spatial distribution showed there is an increasing trend from southeast to northwest for FI while TI was decreased gradually in the same region in Tibet. This research indicates that altitude has a significant influence on the change of FI and TI. With the increase of altitude, FI decreased and TI increased more significantly. The permafrost area was estimated at about 0.59 x 10(6) km(2) in Tibet.
The active layer thickness (ALT) in permafrost regions, which affects water and energy exchange, is a key variable for assessing hydrological processes, cold-region engineering, and climate change. In this study, the authors analyzed the variation trends and relative changes of simulated ALTs using the Chinese Academy of Sciences Land Surface Model (CAS-LSM) and the Chinese Academy of Sciences Flexible Global Ocean-Atmosphere-Land System Model, gridpoint version 3 (CAS-FGOALS-g3). Firstly, the simulated ALTs produced by CAS-LSM were shown to be reasonable by comparing them with Circumpolar Active Layer Monitoring observations. Then, the authors simulated the ALTs from 1979 to 2014, and their relative changes across the entire Northern Hemisphere from 2015 to 2100. It is shown that the ALTs have an increasing trend. From 1979 to 2014, the average ALTs and their variation trends over all permafrost regions were 1.08 m and 0.33 cm yr(-1), respectively. The relative changes of the ALTs ranged from 1% to 58%, and the average relative change was 10.9%. The variation trends of the ALTs were basically consistent with the variation trends of the 2-m air temperature. By 2100, the relative changes of ALTs are predicted to be 10.3%, 14.6%, 30.1%, and 51%, respectively, under the four considered hypothetical climate scenarios (SSP-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). This study indicates that climate change has a substantial impact on ALTs, and our results can help in understanding the responses of the ALTs of permafrost due to climate change.