Prolonged and excessive use of chemical fertilizers has resulted in serious harm to soil health and ecosystems. This study aimed to reduce the cultivation costs for apricot trees, nearly 1/3(rd) of which are spent on fertilizers. The research was conducted on fully grown apricot trees of the cultivar New Castle, in the Solan district of Himachal Pradesh, India. The experiment consisted of fourteen treatment combinations evaluated in triplicate and statistically analyzed using a randomized block design (RBD). Results revealed that treatment T-12 [50% Nitrogen (Calcium Nitrate) + 50% Nitrogen (Urea) + Azotobacter + Phosphate Solubilizing Bacteria + Vermicompost] resulted in the highest percent increase in tree trunk girth (6.82%), highest leaf chlorophyll content (3.00 mg g(-1) fresh weight), leaf area (58.29 cm), fruit set (61.00%) and total yield (61.9 kg tree(-1)). In terms of nutrient status, T-12 had the highest leaf N (2.95%), leaf K (2.60%), soil N (386.33 kg ha(-1)), soil P (51.00 kg ha(-1)) and soil organic carbon (1.81%). The highest net return and profit over recommended dose of fertilizers (RDF) was also recorded in treatment T-12. The results of this study show that judicious fertilizer use along with integrated organic manure and bio-fertilizers can reduce cultivation costs, improve soil health, and increase fruit production with minimum ecosystem damage.
Background Vermicompost contains humic acids, nutrients, earthworm excretions, beneficial microbes, growth hormones, and enzymes, which help plants to tolerate a variety of abiotic stresses. Effective microorganisms (EM) include a wide range of microorganisms' e.g. photosynthetic bacteria, lactic acid bacteria, yeasts, actinomycetes, and fermenting fungi that can stimulate plant growth and improve soil fertility. To our knowledge, no study has yet investigated the possible role of vermicompost and EM dual application in enhancing plant tolerance to water scarcity. Methods Consequently, the current study investigated the effectiveness of vermicompost and EM in mitigating drought-induced changes in wheat. The experiment followed a completely randomized design with twelve treatments. The treatments included control, as well as individual and combined applications of vermicompost and EM at three different irrigation levels (100%, 70%, and 30% of field capacity). Results The findings demonstrated that the application of vermicompost and/or EM significantly improved wheat growth and productivity, as well as alleviated drought-induced oxidative damage with decreased the generation of superoxide anion radical and hydrogen peroxide. This was achieved by upregulating the activities of several antioxidant enzymes, including superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase. Vermicompost and/or EM treatments also enhanced the antioxidant defense system by increasing the content of antioxidant molecules such as ascorbate, glutathione, phenolic compounds, and flavonoids. Additionally, the overproduction of methylglyoxal in water-stressed treated plants was controlled by the enhanced activity of the glyoxalase system enzymes; glyoxalase I and glyoxalase II. The treated plants maintained higher water content related to the higher content of osmotic regulatory substances like soluble sugars, free amino acids, glycinebetaine, and proline. Conclusions Collectively, we offer the first report that identifies the underlying mechanism by which the dual application of vermicompost and EM confers drought tolerance in wheat by improving osmolyte accumulation and modulating antioxidant defense and glyoxalase systems.
From the vineyard to the bottle, the winemaking process generates a variety of by-products, such as vinasses, spent filter cakes, grape pomace, grape lees, and vine shoots. To avoid damaging the environment and to reduce economic impacts, the by-products and wastes must be handled, disposed of, or recycled properly. This review focuses on an environmentally friendly approach to the management and added value of winemaking by-products, such as grape pomace or grape marc, by using vermicomposting. Vermicompost is a well-known organic fertilizer with potential uses in soil bioremediation and the conservation of soil health. To achieve environmental neutral agriculture practices, vermicomposting is a promising tool for resilient and sustainable viticulture and winemaking. Vermicomposting is a simple, highly beneficial, and waste-free method of converting organic waste into compost with high agronomic value and a sustainable strategy in line with the principles of the circular economy.
Cadmium (Cd) contamination in agricultural soils and its accumulation in plant organs have become a global issue due to its harmful effects on human health. The in-situ stabilizing technique, which involves using organic amendments, is commonly employed for removing Cd from agricultural soils. Thus, the current study investigated the effect of vermicompost (VC) on soil properties and plant physio-biochemical attributes, leaf ultrastructure analysis, antioxidant defense mechanisms, and grain yields of two different fragrant rice cultivars, Xiangyaxiangzhan (XGZ) and Meixiangzhan-2 (MXZ-2), under Cd-stress conditions. The results showed that Cd toxicity deteriorates soil quality, the plant's photosynthetic apparatus, and the plant's antioxidant defense mechanism. Moreover, under Cd stress, both cultivars produced significantly lower (p < 0.05) rice grain yields compared to non-Cd stress conditions. However, the VC application alleviated the Cd toxicity and improved soil qualitative traits, such as soil organic carbon, available nitrogen, total nitrogen, phosphorus, and potassium. Similarly, VC amendments improved leaf physiological activity, photosynthetic apparatus function, antioxidant enzyme activities and its related gene expression under Cd stress These enhancements led to increased grain yields of both fragrant under Cd toxicity. The addition of VC mitigated the adverse effects of Cd on the leaf chloroplast structure by reducing Cd uptake and accumulation in tissues. This helped prevent Cd-induced peroxidation damage to leaf membrane lipids by increasing the activities of antioxidant enzymes such as ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD). On average across the growth stages, the Pos-Cd + VC3 treatment increased SOD, APX, CAT, and POD activities by122.2 and 112.5%, 118.6, and 120.6%, 44.6 and 40.6%, and 38.6 and 33.2% in MXZ-2 and XGZ, respectively, compared to the plants treated with Pos-Cd treated alone. Enhancements in leaf physiological activity and plant antioxidant enzyme activity strengthen the plant's antioxidant defense mechanism against Cd toxicity. In addition, correlation analysis showed a strong relationship between the leaf net photosynthetic rate and soil chemical attributes, suggesting that improved soil fertility enhances leaf physiological activity and boosts rice grain yields. Of the treatments, Pos-Cd + VC3 proved to be the most effective treatment in terms of enhancing soil health and achieving high fragrant rice yields. Thus, the outcomes of this study show that the addition of VC in Cd-contaminated soils could be useful for sustainable rice production and safe utilization of Cd-polluted soil.
Because of the numerous ecosystem services provided by soil, such as elemental cycling, food production, and water filtration and storage, this resource requires special protection to maintain total efficiency of these services. However, standard agricultural practices can have a degrading effect, not only on the physical and chemical properties of soil, but may also threaten soil invertebrate communities. Soil macrofauna, and earthworms in particular, play a critical role in soil ecosystems because their activities affect the availability of nutrients for plants, shape soil structure, and significantly impact organic matter dynamics. The present study was undertaken to determine the effects of two systems used in plant cultivation (no-dig and conventional digging). Both used vermicompost as an organic fertilizer and looked at selected characteristics of Lumbricidae groupings and the dynamics of selected soil physicochemical properties. This study was conducted over three years in the same area to ensure that the soil characteristics were the same. The NDG (no-dig) and DG (conventional digging) sites were prepared as appropriate with a perennial hay meadow (MW) used as a control site. An electrical extraction (octet) method was used to collect earthworms. The same six species of earthworm were found at each site: Dendrodrilus rubidus (Sav.), Lumbricus rubellus (Hoff.), Aporrectodea caliginosa (Sav.), Aporrectodea rosea (Sav.), Octolasion lacteum (& Ouml;rley), and Lumbricus terrestris (L.). Earthworm abundance and biomass were found to be significantly higher at the NDG site compared to DG (NDG > DG; abundance by 24% (p < 0.05), biomass by 22% (p < 0.05)). No significant differences between NDG and MW were shown. Moisture, temperature, and soil organic carbon content likely influenced the abundance and biomass of Lumbricidae. The NDG site showed significantly higher organic carbon and moisture content and significantly lower temperatures than the DG site. The average number of earthworms damaged by digging was 0.85 ind. m(-2), but did not significantly affect the other results. Overall, NDG is preferable to DG for enhancing the earthworm and physicochemical parameters of soil.
Meloidogyne incognita is a potentially harmful member of the root-knot nematode family that is capable of impairing plant growth and lowering crop production. They harm their host plants by restricting nutrition, changing cell physiology, dampening the defense system, causing mechanical damage and structural changes, and finally leading to plant death. The aim of this study is to investigate how vermicompost treatment influences the ability of tomato plants to combat free radicals and the changes in their structural components under nematode stress. Tomato seedlings were subjected to vermicompost extract treatment and allowed to germinate in earthen pots. Following germination, they were transplanted into individual pots and exposed to freshly hatched juveniles of Meloidogyne incognita. After a 45-day period, the plants were harvested, and various physiological aspects (such as free radical scavenging capacity and electrolyte leakage) and structural components (including carbohydrate content, elemental composition, and functional groups) were analyzed. Additionally, a fluorescence microscope was employed to measure the buildup of glutathione and hydrogen peroxide in the roots. The study reveals that nematodes adversely affect both radical scavenging capacity and structural components. Nevertheless, treatments involving vermicompost substantially enhance free radical scavenging capacity and mitigate the structural abnormalities induced by nematodes. All of these findings imply that vermicompost can reduce nematode damage and serve as an alternative to chemical nematicides. This is the first study in literature to focus on tomato plant structural and physiological markers, including Fourier transform infrared spectroscopy (FTIR), carbon hydrogen nitrogen (CHN), and free radical scavenging capacity during nematode stress after supplementing with vermicompost for 45 days in field conditions.